Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit des concepts d'apprentissage automatique appliqués tels que la collecte de données, l'ingénierie des caractéristiques, la sélection des modèles et les mesures d'évaluation du rendement.
Introduit les bases de l'apprentissage automatique, y compris la collecte de données, l'évaluation des modèles et la normalisation des fonctionnalités.
Couvre les méthodes du noyau dans l'apprentissage automatique, en se concentrant sur le surajustement, la sélection du modèle, la validation croisée, la régularisation, les fonctions du noyau et la SVM.
Explore comment les architectures modernes ont vaincu la malédiction de la dimensionnalité et l'importance de la stabilité dans les modèles d'apprentissage en profondeur.
Présente la régularisation Lasso et son application à l'ensemble de données MNIST, en mettant l'accent sur la sélection des fonctionnalités et les exercices pratiques sur la mise en œuvre de la descente en gradient.