Spectroscopie laser ultrarapideLa spectroscopie laser ultrarapide est une technique spectroscopique qui utilise des lasers à impulsions ultracourtes pour l'étude de la dynamique sur des échelles de temps extrêmement courtes, de l'attoseconde (10−18 s) à la nanoseconde (10−9 s). Différentes méthodes sont utilisées pour examiner la dynamique des porteurs de charge, des atomes et des molécules. De nombreuses procédures différentes ont été développées pour différentes échelles de temps et différentes plages d'énergie des photons ; quelques méthodes courantes sont énumérées ci-dessous.
Femtosecond pulse shapingIn optics, femtosecond pulse shaping refers to manipulations with temporal profile of an ultrashort laser pulse. Pulse shaping can be used to shorten/elongate the duration of optical pulse, or to generate complex pulses. Generation of sequences of ultrashort optical pulses is key in realizing ultra high speed optical networks, Optical Code Division Multiple Access (OCDMA) systems, chemical and biological reaction triggering and monitoring etc.
Soliton optiqueUn soliton optique est une impulsion électromagnétique se propageant sans déformation. Par sa nature même, elle est solution stable de l'équation de propagation dans le milieu qu'elle traverse (typiquement une fibre optique). Le soliton naît d'un équilibre entre deux effets qui se compensent. Dans le cas d'un soliton optique, ces effets sont essentiellement l'automodulation de phase et la dispersion anormale. Imaginons une impulsion électromagnétique se propageant.
Science attosecondeLa science attoseconde, abrégé en l’attoseconde, est une science du comportement des molécules inventée par le professeur québécois André D. Bandrauk de l’université de Sherbrooke. Cette science est en quelque sorte une combinaison de chimie numérique, de physique quantique et de photonique moléculaire. En 2011, l’attoseconde a obtenu la deuxième place dans le palmarès des découvertes les plus importantes de l’année 2010 retenues par la revue québécoise La Recherche. Le professeur Bandrauk a reçu le prix Marie-Victorin 2010 pour ses découvertes.
Spectroscopie térahertz dans le domaine temporelvignette| Impulsion typique mesurée par THz-TDS. En physique, la spectroscopie TéraHertz dans le domaine temporel ( THz-TDS ) est une technique spectroscopique dans laquelle les propriétés de la matière sont sondées avec de courtes impulsions de rayonnement térahertz. Le schéma de génération et de détection est sensible à l'effet de l'échantillon sur l'amplitude et la phase du rayonnement térahertz. En mesurant dans le domaine temporel, la technique peut fournir plus d'informations que la spectroscopie à transformée de Fourier conventionnelle, qui n'est sensible qu'à l'amplitude.
Dispersion (mécanique ondulatoire)vignette|Dispersion de la lumière blanche au passage d'un dioptre. En mécanique ondulatoire, la dispersion est le phénomène affectant une onde se propageant dans un milieu dit « dispersif », c'est-à-dire dans lequel les différentes longueurs d’onde constituant l'onde ne se propagent pas à la même vitesse. On rencontre ce phénomène pour tous types d'ondes, comme la lumière, le son et les ondes mécaniques (vagues, séismes, etc.). À l'exception du vide, tous les milieux sont dispersifs à des degrés divers.
Paquet d'ondeEn physique, un paquet d'onde, ou train d'onde, est une enveloppe ou un paquet contenant un nombre arbitraire d'ondes élémentaires. Il existe aussi des demi paquets d'onde, qui sont des paquets d'onde scindés en quadrature de phase. En mécanique quantique, le paquet d'onde possède une signification particulière : il est interprété comme étant une onde de probabilité qui décrit la probabilité pour une particule (ou des particules) dans un état donné d'avoir une position et une quantité de mouvement données.
Envelope (waves)In physics and engineering, the envelope of an oscillating signal is a smooth curve outlining its extremes. The envelope thus generalizes the concept of a constant amplitude into an instantaneous amplitude. The figure illustrates a modulated sine wave varying between an upper envelope and a lower envelope. The envelope function may be a function of time, space, angle, or indeed of any variable.