Résumé
Le théorème du codage de source (ou premier théorème de Shannon, ou encore théorème de codage sans bruit) est un théorème en théorie de l'information, énoncé par Claude Shannon en 1948, qui énonce la limite théorique pour la compression d'une source. Le théorème montre que l'on ne peut pas compresser une chaine de variables aléatoires i.i.d, quand la longueur de celle-ci tend vers l'infini, de telle sorte à ce que la longueur moyenne des codes des variables soit inférieure à l'entropie de la variable source. Cependant, on peut avoir une compression avec une longueur moyenne de code arbitrairement proche de l'entropie lorsque la longueur de la chaîne tend vers l'infini. Soit une variable aléatoire , posons la suite de variables aléatoires i.i.d de loi et en notant la longueur minimale d'un code pour à erreur de probabilité au plus . Le théorème énonce que , c'est-à-dire, lorsque tend vers l'infini, que ne peut être compressée en moins de bits sans perte d'information presque certaine. On peut en revanche trouver un code à probabilité d'erreur négligeable approchant cette borne d'arbitrairement près. On considère une suite de symboles provenant d'une source -aire stationnaire (suite de variables i.i.d), le théorème se simplifie en: avec la longueur d'un code optimal pour . Soit donc une variable aléatoire, notons la suite de réalisations différentes de ( suivent la même loi que et sont indépendantes). Le théorème affirme que , encadrons donc cette limite par deux inégalités. Pour et , on définit un ensemble de réalisations typiques de ainsi : . On a alors, avec et l'entropie : Puisque , la loi faible des grands nombres nous assure . Pour assez grand, et comme on peut coder cet ensemble avec moins de bits. Ainsi pour tout et correspondant assez grand, donc . Pour , soit tel que , posons et tels que de cette façon : Maintenant, Le premier terme tendant vers 0, et par la loi faible des grands nombres le second aussi, on a donc donc la probabilité de pouvoir encoder avec caractères ou moins tend vers 0.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.