La théorie algorithmique de l'information, initiée par Kolmogorov, Solomonov et Chaitin dans les années 1960, vise à quantifier et qualifier le contenu en information d'un ensemble de données, en utilisant la théorie de la calculabilité et la notion de machine universelle de Turing.
Cette théorie permet également de formaliser la notion de complexité d'un objet, dans la mesure où l'on considère qu'un objet (au sens large) est d'autant plus complexe qu'il faut beaucoup d'informations pour le décrire, ou — à l'inverse — qu'un objet contient d'autant plus d'informations que sa description est longue. La théorie algorithmique de l'information est fondée sur cette équivalence : la description d'un objet est formalisée par un algorithme (autrement dit une machine de Turing), et sa complexité (autrement dit son contenu en information) est formalisé par certaines caractéristiques de l'algorithme : sa longueur ou son temps de calcul.
Ces fondements sont différents de ceux de la théorie de l'information de Shannon : cette dernière n'utilise pas la notion de calculabilité et n'a de sens que par rapport à un ensemble statistique de données. Cependant, les deux théories sont compatibles et des liens formels entre elles peuvent être établis.
Tandis que la théorie de l'information de Shannon a eu de nombreuses applications en informatique, télécommunications, traitement de signal et neurosciences computationnelles, la théorie algorithmique de l'information a été utilisée avec succès dans les domaines de la biologie, de la physique et même de la philosophie.
L'idée principale de la théorie algorithmique de l'information est qu'une chose est d'autant plus complexe, ou contient d'autant plus d'information, qu'elle est difficile à expliquer, c'est-à-dire fondamentalement longue à expliquer. Voici par exemple trois descriptions d'objets :
D1 :
D2 :
D2' :
En termes de longueur de description, D1 est plus courte que D2' qui est plus courte que D2. Que D1 soit la plus courte description semble normal, et est lié au fait que l'objet décrit est « plus simple ».
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The class will focus on information-theoretic progress of the last decade. Topics include: Network Information Theory ; Information Measures: definitions, properties, and applications to probabilistic
Students extend their knowledge on wireless communication systems to spread-spectrum communication and to multi-antenna systems. They also learn about the basic information theoretic concepts, about c
En informatique théorique et en mathématiques, plus précisément en théorie de l'information, la complexité de Kolmogorov, ou complexité aléatoire, ou complexité algorithmique d'un objet — nombre, , chaîne de caractères — est la taille du plus petit algorithme (dans un certain langage de programmation fixé) qui engendre cet objet. Elle est nommée d'après le mathématicien Andreï Kolmogorov, qui publia sur le sujet dès 1963. Elle est aussi parfois nommée complexité de Kolmogorov-Solomonoff.
Inductive probability attempts to give the probability of future events based on past events. It is the basis for inductive reasoning, and gives the mathematical basis for learning and the perception of patterns. It is a source of knowledge about the world. There are three sources of knowledge: inference, communication, and deduction. Communication relays information found using other methods. Deduction establishes new facts based on existing facts. Inference establishes new facts from data. Its basis is Bayes' theorem.
La longueur de description minimale ou LDM (MDL pour Minimum Description Length en anglais) est un concept inventé par Jorma Rissanen en 1978 et utilisé en théorie de l'information et en compression de données. Le principe est basé sur l'affirmation suivante : toute régularité dans un ensemble de données peut être utilisée afin de compresser l'information, c'est-à-dire l'exprimer à l'aide d'un nombre réduit de symboles. Théorie de l'information Jorma Rissanen, « Modeling by shortest data description », Automatica, vol 14, No 5, pp.
We consider the problem of compressing an information source when a correlated one is available as side information only at the decoder side, which is a special case of the distributed source coding problem in information theory. In particular, we consider ...
IEEE COMPUTER SOC2023
,
The present work proposes a framework for nonlinear model order reduction based on a Graph Convolutional Autoencoder (GCA-ROM). In the reduced order modeling (ROM) context, one is interested in obtaining real -time and many-query evaluations of parametric ...
Information theory has allowed us to determine the fundamental limit of various communication and algorithmic problems, e.g., the channel coding problem, the compression problem, and the hypothesis testing problem. In this work, we revisit the assumptions ...