En mathématiques, et en informatique théorique, le demi-groupe bicyclique est un demi-groupe particulier. Cet objet est important dans la théorie structurelle des demi-groupes et un important exemple de monoïde syntaxique. Même s'il est appelé demi-groupe bicyclique, c'est en fait un monoïde. La première description dans la littérature en a été donnée par Evgenii Sergeevich Lyapin en 1953. Alfred H. Clifford et Gordon Preston, dans leur livre, disent que l'un d'entre eux avait découvert ce monoïde avant 1943, en collaboration avec David Rees, mais n'avait pas publié le résultat. Il existe plusieurs méthodes de construction du demi-groupe bicyclique, et plusieurs notations pour le désigner. Lyapin le note ; Clifford et Preston emploient la notation ; les livres plus récents tendent à utiliser . C'est cette notation qui est adoptée ici. Le demi-groupe bicyclique est le quotient du demi-groupe libre sur deux générateurs et , par la congruence engendré par la relation (voir « »). En d'autre termes, tout élément du demi-groupe est un mot sur et , avec la condition que le facteur n'apparaît pas dans le mot. L'opération du demi-groupe est la concaténation de mots, suivie d'une réduction par la relation si nécessaire ; elle est clairement associative. On peut montrer que tout élément de est en fait de la forme , pour des entiers naturels et . L'opération de composition admet alors l'expression : (qa pb) (qc pd) = qa + c − min{b, c} pd + b − min{b, c}. Dans la construction précédente, l'opération s'exprime sur les exposants des éléments. Ceci suggère que les symboles et peuvent être omis, ne laissant subsister que les opérations sur les exposants et . Ainsi, s'identifie à l'ensemble des couples d'entiers naturels (y compris zéro) avec l'opération suivante : (a, b) (c, d) = (a + c − min{b, c}, d + b − min{b, c}). Ceci définit , comme dans la première construction, sauf qu'ici, a les deux générateurs et , et l'élément neutre . Si trois éléments , et d'un demi-groupe vérifient les conditions suivantes : alors le demi-groupe engendré par et est isomorphe au demi-groupe bicyclique.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (4)
Personnes associées (2)
Concepts associés (6)
Demi-groupe de transformations
En algèbre, un demi-groupe de transformations est un ensemble de fonctions d'un ensemble X dans lui-même qui est fermé pour l'opération de composition. S'il contient l'application identité, c'est un monoïde de transformations. C'est l'analogue, pour les demi-groupes, d'un groupe de permutations. Un analogue du théorème de Cayley vaut pour les demi-groupes : tout demi-groupe est isomorphe à un demi-groupe de transformations sur un ensemble. Un demi-groupe de transformations est un couple , où est un ensemble, et est un demi-groupe de transformations sur .
Special classes of semigroups
In mathematics, a semigroup is a nonempty set together with an associative binary operation. A special class of semigroups is a class of semigroups satisfying additional properties or conditions. Thus the class of commutative semigroups consists of all those semigroups in which the binary operation satisfies the commutativity property that ab = ba for all elements a and b in the semigroup. The class of finite semigroups consists of those semigroups for which the underlying set has finite cardinality.
Monoïde syntaxique
En informatique théorique, et en particulier dans la théorie des automates finis, le monoïde syntaxique d'un langage formel est un monoïde naturellement attaché au langage. L'étude de ce monoïde permet de refléter certaines propriétés combinatoires du langage par des caractéristiques algébriques du monoïde. L'exemple le plus célèbre de cette relation est la caractérisation, due à Marcel-Paul Schützenberger, des langages rationnels sans étoile (que l'on peut décrire par des expressions rationnelles avec complément mais sans l'étoile de Kleene) : ce sont les langages dont le monoïde syntaxique est fini et apériodique, c'est-à-dire ne contient pas de sous-groupe non trivial.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.