Adams spectral sequenceIn mathematics, the Adams spectral sequence is a spectral sequence introduced by which computes the stable homotopy groups of topological spaces. Like all spectral sequences, it is a computational tool; it relates homology theory to what is now called stable homotopy theory. It is a reformulation using homological algebra, and an extension, of a technique called 'killing homotopy groups' applied by the French school of Henri Cartan and Jean-Pierre Serre. For everything below, once and for all, we fix a prime p.
Groupes d'homotopie des sphèresEn mathématiques, et plus spécifiquement en topologie algébrique, les groupes d'homotopie des sphères sont des invariants qui décrivent, en termes algébriques, comment des sphères de dimensions et égales ou différentes peuvent s'enrouler l'une sur l'autre. La notion, définie au départ pour des sphères de dimension 1 (cercles) et de dimension 2, se généralise à des sphères de toutes dimensions (les -sphères).
Steenrod algebraIn algebraic topology, a Steenrod algebra was defined by to be the algebra of stable cohomology operations for mod cohomology. For a given prime number , the Steenrod algebra is the graded Hopf algebra over the field of order , consisting of all stable cohomology operations for mod cohomology. It is generated by the Steenrod squares introduced by for , and by the Steenrod reduced th powers introduced in and the Bockstein homomorphism for . The term "Steenrod algebra" is also sometimes used for the algebra of cohomology operations of a generalized cohomology theory.
Michael AtiyahSir Michael Francis Atiyah, né le à Londres et mort le , est un mathématicien anglais d'origine libanaise, fils de l'écrivain Edward Atiyah. Il est professeur à l'université d'Oxford, à l'université de Cambridge et à l'université de Princeton. Membre de la Royal Society depuis 1962, il en est président de 1990 à 1995. Il est lauréat de la médaille Fields 1966, du prix Abel 2004 et de la grande médaille 2010.
Cohomology operationIn mathematics, the cohomology operation concept became central to algebraic topology, particularly homotopy theory, from the 1950s onwards, in the shape of the simple definition that if F is a functor defining a cohomology theory, then a cohomology operation should be a natural transformation from F to itself. Throughout there have been two basic points: the operations can be studied by combinatorial means; and the effect of the operations is to yield an interesting bicommutant theory.
Théorie de l'homotopie stableEn mathématiques, la théorie de l'homotopie stable est une partie de la théorie de l'homotopie concernée par les structures et tous les phénomènes qui subsistent après suffisamment d'applications du foncteur de suspension. Un résultat fondateur a été le théorème de suspension de Freudenthal, qui stipule que, étant donné tout espace pointé , les groupes d'homotopie se stabilisent pour suffisamment grand. En particulier, les groupes d'homotopie des sphères se stabilisent pour .