Résumé
En mathématiques, et plus particulièrement en algèbre linéaire et en analyse fonctionnelle, on désigne par théorème spectral plusieurs énoncés affirmant, pour certains endomorphismes, l'existence de décompositions privilégiées, utilisant en particulier l'existence de sous-espaces propres. vignette|Une illustration du théorème spectral dans le cas fini : un ellipsoïde possède (en général) trois axes de symétrie orthogonaux (notés ici x, y et z). Le cas le plus élémentaire concerne les matrices symétriques représentant les formes quadratiques en dimension finie ; le théorème spectral correspondant, démontré par Karl Weierstrass en 1858, affirme que ces matrices sont toutes diagonalisables dans les réels, par l'intermédiaire d'un changement de base orthonormée ; un exemple de conséquence géométrique de ce résultat est l'existence, pour les quadriques non dégénérées, de trois axes de symétrie orthogonaux, les axes principaux, mais il a d'autres conséquences importantes dans des domaines mathématiques variés (équations différentielles, classification des formes quadratiques, calcul numérique, statistiques) ainsi qu'en physique, pour des questions de mécanique générale du solide ou du point. La généralisation à la dimension infinie est l'objet de la théorie spectrale. Elle est indispensable à la physique du , par exemple en mécanique quantique. vignette|gauche|La sphère rouge représente la sphère unité pour la première forme, la figure bleue représente la sphère unité pour la deuxième forme dans la mesure où celle-ci est définie positive. La figure bleue est un ellipsoïde dont les axes sont orthogonaux pour la première forme. Une quadrique est un objet structurant, un cas particulier essentiel est celui de la sphère, définir un tel objet dans un espace vectoriel revient à le munir d'une distance spécifique, dite euclidienne. Une méthode couramment utilisée consiste à utiliser une forme quadratique, c'est-à-dire une application de l'espace dans l'ensemble des réels positifs.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.