En géométrie euclidienne, l'excentricité est un paramètre caractéristique d'une courbe conique. C'est un nombre réel positif, souvent noté e. Les coniques apparaissent notamment en mécanique newtonienne avec la trajectoire d’un corps ponctuel dans un champ gravitationnel radial. C’est donc, en première approximation, la forme des trajectoires des planètes autour du soleil, de leurs satellites et des comètes. Lorsqu’un corps a une trajectoire elliptique autour du soleil, ce dernier ne se trouve pas au centre de l’ellipse mais en l’un de ses foyers. L’excentricité mesure alors le décalage du foyer sur l’axe principal de l’ellipse. Elle est proche de 0 pour une trajectoire presque circulaire, et plus proche de 1 quand l’ellipse est très allongée. Une conique est une courbe obtenue par section plane d’un cône de l’espace tridimensionnel euclidien. Elle se réalise aussi comme l’ensemble des points d’annulation d’une fonction quadratique, ou encore comme une courbe de niveau du rapport entre la distance à un point fixé (le foyer) et la distance à une droite (directrice). Dans un repère orthonormal adapté, l’équation d’une conique non dégénérée se met sous l’une des trois formes suivantes :- avec : la courbe est une ellipse ou un cercle et son excentricité s’écrit la courbe est une hyperbole et son excentricité s’écrit la courbe est une parabole et son excentricité vaut 1. Sauf pour le cercle, l'excentricité est le nombre positif tel que : où le point F est un foyer et le point H désigne le projeté orthogonal du point M sur la droite D, appelée directrice. Il apparaît dans la formule des coniques donnée en coordonnées polaires à partir de l'un de ses foyers : Lorsque la valeur de e tend vers l'infini, la conique dégénère en une ligne droite : la droite D, sa directrice. Les ellipses et les hyperboles possèdent des définitions bifocales. Soient F et F' deux points et O le milieu de [FF'], c la distance OF et a un réel positif.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
MATH-126: Geometry for architects II
Ce cours traite des 3 sujets suivants : la perspective, la géométrie descriptive, et une initiation à la géométrie projective.
Séances de cours associées (20)
Construction d'Ovales : des Amphithéâtres romains à l'architecture moderne
Explore les méthodes de construction historiques des ovales, des amphithéâtres romains à l'architecture moderne, y compris l'utilisation de double tangence symétrique.
Stabilisation des structures métalliques
Couvre l'excentricité, les nœuds tubulaires, le cisaillement, le poinçonnage et le contreventement dans les structures métalliques.
Conicité Parabolique
Explore les caractéristiques de la conicité parabolique et montre comment résoudre les problèmes connexes.
Afficher plus
Concepts associés (12)
Conique
En géométrie euclidienne, une conique est une courbe plane algébrique, définie initialement comme l’intersection d'un cône de révolution (supposé prolongé à l’infini de part et d’autre du sommet) avec un plan. Lorsque le plan de coupe ne passe pas par le sommet du cône, la conique est dite non dégénérée et réalise l’une des trois formes de courbe suivantes : ellipse, parabole ou hyperbole (le cercle étant un cas particulier de l'ellipse, parfois appelé quatrième forme). Ces courbes sont caractérisées par un paramètre réel appelé excentricité.
Théorème de Dandelin
En mathématiques, le théorème de Dandelin, ou théorème de Dandelin-Quetelet ou théorème belge sur la section conique, est un théorème portant sur les coniques. Le théorème de Dandelin énonce que, si une ellipse ou une hyperbole est obtenue comme section conique d'un cône de révolution par un plan, alors : il existe deux sphères à la fois tangentes au cône et au plan de la conique (de part et d'autre de ce plan pour l'ellipse et d'un même côté de ce plan pour l'hyperbole) ; les points de tangence des deux sphères au plan sont les foyers de la conique ; les directrices de la conique sont les intersections du plan de la conique avec les plans contenant les cercles de tangences des sphères avec le cône.
Anomalie excentrique
lang=fr|thumb|Diagramme montrant diverses anomalies d'une ellipse. Dans la description de l'orbite képlérienne d'un objet céleste, l'anomalie excentrique, en général notée E, est l'angle entre la direction du périapside et la position courante d'un objet sur son orbite, projetée sur le cercle exinscrit perpendiculairement au grand axe de l'ellipse, mesuré au centre de celle-ci. Dans le diagramme ci-contre, c'est l'angle zcx. z est le périapside, p la position de l'objet, s le foyer de son orbite elliptique, c le centre de l'ellipse.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.