Explore le parallélisme dans la programmation, en mettant l'accent sur les compromis entre la programmabilité et la performance, et introduit la programmation parallèle en mémoire partagée à l'aide d'OpenMP.
Défis liés à la prise de décisions en temps réel dans les systèmes à forte intensité de données, y compris la désinfectation des données par requête, l'optimisation du matériel et l'accès aux données GPU.
Couvre les concepts fondamentaux du graphisme informatique, y compris le rendu, la modélisation et l'animation, visant à développer des compétences pratiques et stimuler l'intérêt dans le domaine interdisciplinaire.
Introduit le traitement de flux de données, couvrant le traitement par lots vs le traitement de flux, des informations en temps réel, des applications, des défis et des outils comme Apache Kafka et Spark Streaming.
Couvre efficacement l'optimisation de joint accéléré GPU pour les requêtes complexes, en se concentrant sur l'amélioration des temps d'optimisation et de la qualité du plan heuristique.
Explore les requêtes accélérées par GPU, les avantages SSD et les goulets d'étranglement PCIe pour les GPU dans les systèmes à forte intensité de données.
Explore l'avenir de l'informatique, y compris l'impact de la loi de Moore, les différences entre CPU et GPU, et l'évolution du matériel conventionnel et neuromorphique.
Explore la virtualisation des données dans le projet SmartDataLake, couvrant l'optimisation des requêtes, le niveau de stockage et les défis dans le traitement de données hétérogènes.