En mathématiques, et plus particulièrement en théorie des groupes, le théorème de correspondance (énoncé de façon plus ou moins complète selon les auteurs) dit que si G est un groupe et H un sous-groupe normal de G, alors K↦K/H définit une bijection f de l'ensemble des sous-groupes de G contenant H sur l'ensemble des sous-groupes de G/H; cette bijection applique les sous-groupes normaux de G contenant H sur les sous-groupes normaux de G/H ; si les ensembles de départ et d'arrivée de f sont ordonnés par inclusion, f est un isomorphisme d'ensembles ordonnés (autrement dit, si K et L sont deux sous-groupes de G contenant H, la relation K≤L a lieu si et seulement si K/H ≤ L/H). Certains auteurs ajoutent que si A et B sont deux sous-groupes de G contenant H tels que A≤B, alors l'indice de A dans B est égal à l'indice de f(A) dans f(B) ; A est normal dans B si et seulement si f(A) est normal dans f(B) ; dans ce cas, B/A est isomorphe à f(B)/f(A) (ce qui est le troisième théorème d'isomorphisme).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.