Gram matrixIn linear algebra, the Gram matrix (or Gramian matrix, Gramian) of a set of vectors in an inner product space is the Hermitian matrix of inner products, whose entries are given by the inner product . If the vectors are the columns of matrix then the Gram matrix is in the general case that the vector coordinates are complex numbers, which simplifies to for the case that the vector coordinates are real numbers. An important application is to compute linear independence: a set of vectors are linearly independent if and only if the Gram determinant (the determinant of the Gram matrix) is non-zero.
Espace-temps (structure algébrique)En physique mathématique, lespace-temps peut-être modélisé par une structure d'algèbre géométrique satisfaisant la géométrie décrite par la relativité restreinte. On parle alors dalgèbre d'espace-temps ou algèbre spatio-temporelle (Space-time algebra en anglais). L'espace-temps contient alors des vecteurs, bivecteurs et autres multivecteurs qui peuvent être combinés les uns aux autres ainsi que transformés selon les transformations de Lorentz ou autres transformations possibles dans une algèbre géométrique (notamment les réflexions).
Blade (geometry)In the study of geometric algebras, a k-blade or a simple k-vector is a generalization of the concept of scalars and vectors to include simple bivectors, trivectors, etc. Specifically, a k-blade is a k-vector that can be expressed as the exterior product (informally wedge product) of 1-vectors, and is of grade k. In detail: A 0-blade is a scalar. A 1-blade is a vector. Every vector is simple. A 2-blade is a simple bivector. Sums of 2-blades are also bivectors, but not always simple.
Coordonnées plückeriennesLes coordonnées plückeriennes sont des coordonnées grassmanniennes particulières. Inventées par Julius Plücker, elles ont ensuite été généralisées entre 1832 et 1839 par Hermann Grassmann. On considère la grassmannienne formée par les sous-espaces de dimension d'un espace de dimension , c'est-à-dire la plus simple des grassmanniennes qui ne soit pas un espace projectif. Elle a été identifiée par Plücker comme l'ensemble des droites de l'espace projectif de dimension 3.
Coordonnées grassmanniennesLes coordonnées grassmanniennes sont une généralisation des coordonnées plückeriennes qui permettent de paramétrer les sous espaces de dimension de l'espace vectoriel par un élément de l'espace projectif de l'espace vectoriel des produits extérieurs des familles de vecteurs de . Le plongement plückerien est un plongement naturel de la variété grassmannienne dans l'espace projectif : Ce plongement est défini comme suit.
Vector algebraIn mathematics, vector algebra may mean: Linear algebra, specifically the basic algebraic operations of vector addition and scalar multiplication; see vector space. The algebraic operations in vector calculus, namely the specific additional structure of vectors in 3-dimensional Euclidean space of dot product and especially cross product. In this sense, vector algebra is contrasted with geometric algebra, which provides an alternative generalization to higher dimensions.
Produit dyadiqueEn mathématiques, et plus précisément en algèbre multilinéaire, le produit dyadique de deux vecteurs, et , chacun ayant la même dimension, est le produit tensoriel de ces vecteurs, lequel est un tenseur d'ordre deux et de rang un. Si et sont deux vecteurs d'un espace vectoriel E de dimension finie n, muni d'une base donnée , les coordonnées du produit dyadique dans la base correspondante du produit tensoriel sont données par où , et , et alors Le produit dyadique peut être simplement représenté par la matrice carrée obtenue en multipliant en tant que vecteur colonne par en tant que vecteur ligne.
Analyse multivectorielleL’analyse géométrique, calcul géométrique, analyse multivectorielle, ou encore calcul multivectoriel, est une branche des mathématiques qui est aux structures d'algèbres géométriques ce que l'analyse vectorielle est aux espaces vectoriels. En substance, l'analyse géométrique considère des fonctions définies sur un espace vectoriel et à valeurs dans l'algèbre géométrique sous-tendue par cet espace, et s'intéresse aux limites exhibées par ces fonctions dans le cadre du calcul infinitésimal.
Split-biquaternionIn mathematics, a split-biquaternion is a hypercomplex number of the form where w, x, y, and z are split-complex numbers and i, j, and k multiply as in the quaternion group. Since each coefficient w, x, y, z spans two real dimensions, the split-biquaternion is an element of an eight-dimensional vector space. Considering that it carries a multiplication, this vector space is an algebra over the real field, or an algebra over a ring where the split-complex numbers form the ring.
ParavectorThe name paravector is used for the combination of a scalar and a vector in any Clifford algebra, known as geometric algebra among physicists. This name was given by J. G. Maks in a doctoral dissertation at Technische Universiteit Delft, Netherlands, in 1989. The complete algebra of paravectors along with corresponding higher grade generalizations, all in the context of the Euclidean space of three dimensions, is an alternative approach to the spacetime algebra (STA) introduced by David Hestenes.