Les coordonnées plückeriennes sont des coordonnées grassmanniennes particulières. Inventées par Julius Plücker, elles ont ensuite été généralisées entre 1832 et 1839 par Hermann Grassmann.
On considère la grassmannienne formée par les sous-espaces de dimension d'un espace de dimension , c'est-à-dire la plus simple des grassmanniennes qui ne soit pas un espace projectif. Elle a été identifiée par Plücker comme l'ensemble des droites de l'espace projectif de dimension 3.
On considère un élément de cette grassmannienne (c'est-à-dire un plan vectoriel de ) et deux vecteurs indépendants
qui l'engendrent. On forme la matrice obtenue en concaténant leurs coordonnées dans la base canonique :
On note pour coordonnées primaires les 6 déterminants suivants, définis pour distincts 2 à 2 pris parmi .
On les range traditionnellement dans l'ordre suivant : .
On montre les résultats suivants :
Si engendrent le même plan, alors les coordonnées primaires associées à ce couple sont proportionnelles aux coordonnées précédentes.
Réciproquement, si deux couples ont des coordonnées primaires proportionnelles, ils engendrent le même plan.
En particulier, les coordonnées primaires ne s'annulent pas et ce qui précède donne l'existence d'une injection de la grasmannienne dans l'espace projectif (son image sera décrite dans la section suivante).
Les points de la grassmannienne sont donc entièrement déterminés par la donnée du sextuplet de coordonnées homogènes : ; ce sont les coordonnées plückeriennes du plan correspondant.
Le plan vectoriel engendré par le vecteur de la base canonique a pour coordonnées plückeriennes : .
Le plan vectoriel de coordonnées plückeriennes : est le plan engendré par les vecteurs de la base canonique.
De façon générale, les images de la grassmannienne par le plongement plückerien satisfont des relations polynomiales quadratiques assez simples.
Dans le cas de la dimension 4 et des coordonnées de Plücker (). Ces équations se résument à une seule, appelée relation de Plücker, de sorte que la grassmannienne se réalise par ce biais comme une sous variété de dimension 4 de .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Les coordonnées grassmanniennes sont une généralisation des coordonnées plückeriennes qui permettent de paramétrer les sous espaces de dimension de l'espace vectoriel par un élément de l'espace projectif de l'espace vectoriel des produits extérieurs des familles de vecteurs de . Le plongement plückerien est un plongement naturel de la variété grassmannienne dans l'espace projectif : Ce plongement est défini comme suit.
Julius Plücker ( ou à Elberfeld, Duché de Berg - à Bonn, Royaume de Prusse) est un mathématicien et un physicien prussien. Il a obtenu des résultats fondamentaux en géométrie analytique et fut un pionnier dans les recherches sur les rayons cathodiques qui aboutirent à la découverte de l'électron. Il a aussi beaucoup travaillé sur les courbes de Lamé. Plücker est né à Elberfeld (aujourd'hui incorporé à Wuppertal).
En mathématiques, les grassmanniennes sont des variétés dont les points correspondent aux sous-espaces vectoriels d'un espace vectoriel fixé. On note G(k, n) ou G(K) la grassmannienne des sous-espaces de dimension k dans un espace de dimension n sur le corps K. Ces espaces portent le nom de Hermann Grassmann qui en donna une paramétrisation et sont encore appelés grassmanniennes des « k-plans ». Pour k = 1, la grassmannienne est l'espace projectif associé à l'espace vectoriel.
This course provides an introduction to stochastic optimal control and dynamic programming (DP), with a variety of engineering
applications. The course focuses on the DP principle of optimality, and i
We obtain new results pertaining to convergence and recurrence of multiple ergodic averages along functions from a Hardy field. Among other things, we confirm some of the conjectures posed by Frantzikinakis in [Fra10; Fra16] and obtain combinatorial applic ...
In this thesis, we investigate the inverse problem of trees and barcodes from a combinatorial, geometric, probabilistic and statistical point of view.Computing the persistent homology of a merge tree yields a barcode B. Reconstructing a tree from B involve ...
EPFL2022
, ,
This paper is devoted to the study of multigraded algebras and multigraded linear series. For an NsNs-graded algebra AA, we define and study its volume function FA:N+s -> RFA:N+s→R, which computes the ...