Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Matrice hessienneEn mathématiques, la matrice hessienne (ou simplement le hessien ou la hessienne) d'une fonction numérique est la matrice carrée, notée , de ses dérivées partielles secondes. Etant donnée une fonction à valeurs réelles dont toutes les dérivées partielles secondes existent, le coefficient d'indice de la matrice hessienne vaut . Autrement dit, On appelle discriminant hessien (ou simplement hessien) le déterminant de cette matrice. Le terme « hessien » a été introduit par James Joseph Sylvester, en hommage au mathématicien allemand Ludwig Otto Hesse.
Norme matricielleEn mathématiques, une norme matricielle est un cas particulier de norme vectorielle, sur un espace de matrices. Dans ce qui suit, K désigne le corps des réels ou des complexes. Certains auteurs définissent une norme matricielle comme étant simplement une norme sur un espace vectoriel M(K) de matrices à m lignes et n colonnes à coefficients dans K. Pour d'autres, une norme matricielle est seulement définie sur une algèbre M(K) de matrices carrées et est une norme d'algèbre, c'est-à-dire qu'elle est de plus sous-multiplicative.
Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Système d'équations linéairesEn mathématiques et particulièrement en algèbre linéaire, un système d'équations linéaires est un système d'équations constitué d'équations linéaires qui portent sur les mêmes inconnues. Par exemple : Le problème est de trouver les valeurs des inconnues , et qui satisfassent les trois équations simultanément. La résolution des systèmes d'équations linéaires appartient aux problèmes les plus anciens dans les mathématiques et ceux-ci apparaissent dans beaucoup de domaines, comme en traitement numérique du signal, en optimisation linéaire, ou dans l'approximation de problèmes non linéaires en analyse numérique.
Méthode de Newtonvignette|Une itération de la méthode de Newton. En analyse numérique, la méthode de Newton ou méthode de Newton-Raphson est, dans son application la plus simple, un algorithme efficace pour trouver numériquement une approximation précise d'un zéro (ou racine) d'une fonction réelle d'une variable réelle. Cette méthode doit son nom aux mathématiciens anglais Isaac Newton (1643-1727) et Joseph Raphson (peut-être 1648-1715), qui furent les premiers à la décrire pour la recherche des solutions d'une équation polynomiale.
Mineur (algèbre linéaire)vignette|Il est possible d'utiliser les mineurs d'ordre 2 d'une matrice de dimension 3 pour calculer son déterminant. En algèbre linéaire, les mineurs d'une matrice sont les déterminants de ses sous-matrices carrées. Ainsi si A est une matrice de taille m par n, on appelle mineur d'ordre k le déterminant d'une sous-matrice carrée de taille k obtenue en supprimant m – k lignes et n – k colonnes de la matrice initiale, ce que l'on peut noter det A, où I ( J) est une partie à k éléments de {1, ..., m ( n)}.
Numerical methods for linear least squaresNumerical methods for linear least squares entails the numerical analysis of linear least squares problems. A general approach to the least squares problem can be described as follows. Suppose that we can find an n by m matrix S such that XS is an orthogonal projection onto the image of X. Then a solution to our minimization problem is given by simply because is exactly a sought for orthogonal projection of onto an image of X (see the picture below and note that as explained in the next section the image of X is just a subspace generated by column vectors of X).