Fonction itéréeEn mathématiques, une fonction itérée est une fonction obtenue par composition répétée d’une autre fonction avec elle-même un certain nombre de fois. La procédure consistant à appliquer la même fonction à plusieurs reprises s’appelle itération. Les fonctions itérées apparaissent en informatique, dans les systèmes dynamiques, les groupes de renormalisation et sont à la base des fractales. L’itérée, plus précisément la deuxième itérée, d’une fonction f , définie sur un ensemble X et à valeurs dans ce même ensemble X, est la fonction où note la composition de fonctions.
Transformation du boulangerLa transformation du boulanger est une transformation basée sur l'idée d'un mélange analogue au pétrissage par un boulanger qui étire une pâte jusqu'à ce qu'elle soit d'épaisseur moitié, puis la coupe en deux et superpose les deux moitiés pour lui redonner sa dimension initiale, et ainsi de suite. Ce mélange est souvent évoqué en théorie du chaos. Dans ce cas, il s'agit d'une version continue de la transformation. Une version discrète de cette transformation existe aussi pour manipuler des images informatiques.
Shift spaceIn symbolic dynamics and related branches of mathematics, a shift space or subshift is a set of infinite words that represent the evolution of a discrete system. In fact, shift spaces and symbolic dynamical systems are often considered synonyms. The most widely studied shift spaces are the subshifts of finite type and the sofic shifts. In the classical framework a shift space is any subset of , where is a finite set, which is closed for the Tychonov topology and invariant by translations.
Subshift of finite typeIn mathematics, subshifts of finite type are used to model dynamical systems, and in particular are the objects of study in symbolic dynamics and ergodic theory. They also describe the set of all possible sequences executed by a finite state machine. The most widely studied shift spaces are the subshifts of finite type. Let V be a finite set of n symbols (alphabet). Let X denote the set V^\Z of all bi-infinite sequences of elements of V together with the shift operator T. We endow V with the discrete topology and X with the product topology.
Mesure imageEn théorie de la mesure, la mesure image est une mesure définie sur un espace mesurable et transférée sur un autre espace mesurable via une fonction mesurable. On se donne deux espaces mesurables et , une application mesurable et une mesure . La mesure image de μ par f est une mesure sur notée et définie par : Cette définition s'applique également aux mesures complexes signées. La formule de changement de variables est l'une des principales propriétés : Une fonction g sur X est intégrable par rapport à la mesure image fμ si et seulement si la fonction composée g∘ f est intégrable par rapport à la mesure μ.
Opérateur de décalageLes opérateurs de décalage (en anglais : les shifts) sont des opérateurs linéaires qui interviennent en analyse fonctionnelle, une branche des mathématiques. Le plus souvent mentionné est l'opérateur de décalage unilatéral, un opérateur borné non normal particulier, sur un espace de Hilbert muni d'une base hilbertienne infinie dénombrable. Tout espace de Hilbert séparable de dimension infinie (sur K = R ou C) est de dimension hilbertienne dénombrable, c'est-à-dire qu'il est isomorphe à l'espace l(I) des suites de carré sommable à valeurs dans K, indexées par un ensemble I infini dénombrable, par exemple I = N ou Z.
Processus de BernoulliEn probabilités et en statistiques, un processus de Bernoulli est un processus stochastique discret qui consiste en une suite de variables aléatoires indépendantes qui prennent leurs valeurs parmi deux symboles. Prosaïquement, un processus de Bernoulli consiste à tirer à pile ou face plusieurs fois de suite, éventuellement avec une pièce truquée. Une variable dans une séquence de ce type peut être qualifiée de variable de Bernoulli. Un processus de Bernoulli est une chaîne de Markov. Son arbre de probabilité est un arbre binaire.
Système dynamique mesuréUn système dynamique mesuré est un objet mathématique, représentant un espace de phases muni d'une loi d'évolution, particulièrement étudié en théorie ergodique. Un système dynamique mesuré est la donnée d'un espace probabilisé et d'une application mesurable f : X → X. On exige que f préserve la mesure, ce qui veut dire que : Cette propriété très riche permet d'obtenir de puissants théorèmes. Par ailleurs, un théorème affirme qu'il existe, pour toute transformation continue X → X d'un espace topologique compact X, une mesure de probabilité, borélienne, préservant cette transformation.
Système dynamiqueEn mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).