Concept

Freudenthal magic square

Concepts associés (8)
Triple system
In algebra, a triple system (or ternar) is a vector space V over a field F together with a F-trilinear map The most important examples are Lie triple systems and Jordan triple systems. They were introduced by Nathan Jacobson in 1949 to study subspaces of associative algebras closed under triple commutators [[u, v], w] and triple anticommutators {u, {v, w. In particular, any Lie algebra defines a Lie triple system and any Jordan algebra defines a Jordan triple system.
Hermitian symmetric space
In mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has an inversion symmetry preserving the Hermitian structure. First studied by Élie Cartan, they form a natural generalization of the notion of Riemannian symmetric space from real manifolds to complex manifolds. Every Hermitian symmetric space is a homogeneous space for its isometry group and has a unique decomposition as a product of irreducible spaces and a Euclidean space.
Plan de Cayley
En mathématiques, le plan de Cayley (ou plan projectif octonionique) P2(O) est un plan projectif sur les octonions. Le plan de Cayley a été découvert en 1933 par la mathématicienne allemande Ruth Moufang et porte le nom d'Arthur Cayley pour son article de 1845 décrivant les octonions. Dans le plan de Cayley, les droites et les points peuvent être définis de manière naturelle de sorte à former un espace projectif de dimension deux, c'est-à-dire un plan projectif. C'est un plan non arguésien, c'est-à-dire que le théorème de Desargues n'est pas vérifié.
E7 (mathématiques)
En mathématiques, E7 est le nom d'un groupe de Lie complexe de type exceptionnel. Son algèbre de Lie est notée . E7 est de rang 7 et de dimension 133. Le groupe fondamental de sa forme compacte est le groupe cyclique Z2. sa représentation fondamentale est de dimension 56. La forme compacte réelle de E7 est le groupe d'isométries d'une variété riemannienne de dimension 64 appelée plan projectif quateroctionique. Ce nom vient du fait qu'il peut être construit en utilisant une algèbre qui est construite comme produit tensoriel des quaternions avec les octonions.
Simple Lie group
In mathematics, a simple Lie group is a connected non-abelian Lie group G which does not have nontrivial connected normal subgroups. The list of simple Lie groups can be used to read off the list of simple Lie algebras and Riemannian symmetric spaces. Together with the commutative Lie group of the real numbers, , and that of the unit-magnitude complex numbers, U(1) (the unit circle), simple Lie groups give the atomic "blocks" that make up all (finite-dimensional) connected Lie groups via the operation of group extension.
E8 (mathématiques)
vignette|Le polytope de Gosset : les 240 vecteurs du système de racines En mathématiques, est le plus grand groupe de Lie complexe de type exceptionnel. Son algèbre de Lie est notée . E est de rang 8 et de dimension 248. Il est simplement connexe et son centre est trivial. La structure E a été découverte en 1887 par le mathématicien norvégien Sophus Lie pour étudier la symétrie et jusqu’ici personne ne pensait que cet objet mathématique pourrait être compris, considère , responsable de l’équipe qui réunit 18 mathématiciens et programmeurs dans le monde, dont Fokko du Cloux et .
E6 (mathématiques)
En mathématiques, E6 est le nom d'un groupe de Lie ; son algèbre de Lie est notée . Il s'agit de l'un des cinq groupes de Lie complexes de type exceptionnel. E6 est de rang 6 et de dimension 78. Le groupe fondamental de sa forme compacte est le groupe cyclique Z3 et son groupe d'automorphismes est le groupe cyclique Z2. Sa représentation fondamentale est de dimension complexe 27. Sa représentation duale est également de dimension 27. Une certaine forme non compacte réelle de E6 est le groupe des collinéations du plan projectif octonionique OP2, ou plan de Cayley.
F4 (mathématiques)
En mathématiques, F4 est un groupe de Lie exceptionnel de type complexe. Son algèbre de Lie est notée . F4 est de rang 4 et de dimension 52. Sa forme compacte est simplement connexe et son groupe d'automorphismes est le groupe trivial. Sa représentation fondamentale est de dimension 26. La forme compacte réelle de F4 est le groupe d'isométries d'une variété riemannienne de dimension 16, connu également sous le nom de plan projectif octonionique, OP2, ou plan de Cayley.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.