Concept

E8 (mathématiques)

Résumé
vignette|Le polytope de Gosset : les 240 vecteurs du système de racines En mathématiques, est le plus grand groupe de Lie complexe de type exceptionnel. Son algèbre de Lie est notée . E est de rang 8 et de dimension 248. Il est simplement connexe et son centre est trivial. La structure E a été découverte en 1887 par le mathématicien norvégien Sophus Lie pour étudier la symétrie et jusqu’ici personne ne pensait que cet objet mathématique pourrait être compris, considère , responsable de l’équipe qui réunit 18 mathématiciens et programmeurs dans le monde, dont Fokko du Cloux et . En plus du groupe de Lie complexe , de dimension complexe 248 (donc de dimension réelle 496), il existe trois formes réelles de ce groupe, toutes de dimension réelle 248. Les plus simples sont les et (non compacte maximale ou encore split en anglais) et il en existe une troisième, notée . On peut construire la forme compacte du groupe E comme le groupe d'automorphismes de l'algèbre de lie correspondante. Cette algèbre possède comme sous-algèbre de dimension 120 et on peut se servir de celle-ci pour décomposer la représentation adjointe comme où est l'une des deux représentations spinorielles du groupe dont est l'algèbre de Lie. Si on appelle un jeu de générateurs pour et les 128 composantes de alors on peut écrire explicitement les relations définissant comme ainsi que qui correspond à l'action naturelle de sur le spineur . Le commutateur restant (qui est bien un commutateur et non pas un anticommutateur) est défini entre les composantes du spineur comme À partir de ces définitions on peut vérifier que l'identité de Jacobi est satisfaite. La forme réelle compacte de E peut être vue comme le groupe d'isométrie d'une variété riemannienne de dimension 128 appelée plan projectif octooctonionique. Ce nom vient de ce qu'il peut être construit en utilisant une algèbre qui est construite comme produit tensoriel des octonions avec eux-mêmes. Ce type de construction est analysé en détail par Hans Freudenthal et Jacques Tits dans .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.