vignette|Exemple d'une surface à laquelle le théorème de Gauss-Bonnet peut être appliqué
En géométrie différentielle, la formule de Gauss-Bonnet est une propriété reliant la géométrie (au sens de la courbure de Gauss) et la topologie (au sens de la caractéristique d'Euler) des surfaces. Elle porte le nom des mathématiciens Carl Friedrich Gauss, qui avait conscience d'une version du théorème, mais ne la publia jamais, et Pierre Ossian Bonnet, qui en publia un cas particulier en 1848.
D'après le théorème, la courbure de Gauss totale d'une surface fermée est égale à 2π fois la caractéristique d'Euler de la surface. Notons que pour une surface compacte orientable sans bord, la caractéristique d'Euler égale , où est le genre de la surface : une surface compacte orientable sans bord est topologiquement équivalente à une sphère avec des anses attachées, et compte le nombre d'anses.
Si on déforme la surface , sa caractéristique d'Euler, qui est un invariant topologique, ne change pas, tandis que la courbure en certains points change. Le théorème établit, résultat un peu surprenant, que l'intégrale de toutes les courbures ne change pas quelle que soit la déformation. Par exemple si on a une sphère avec une « bosse », alors sa courbure totale est 4π (la caractéristique d'Euler d'une sphère vaut 2), que l'on accroisse ou diminue la bosse.
La compacité de la surface est essentielle. Si on considère par exemple le disque unité ouvert, une surface de Riemann non compacte et sans bord, la courbure vaut 0 et la caractéristique d'Euler 1 : la formule de Gauss–Bonnet ne fonctionne pas. Elle devient vraie cependant pour le disque unité fermé et compact, qui a une caractéristique d'Euler égale à 1, à cause de l'intégrale sur la frontière qui vaut 2π.
Autre application, le tore a une caractéristique d'Euler égale à 0, donc sa courbure totale doit être nulle. Si le tore est muni de la métrique riemannienne ordinaire induite par son plongement dans R, alors l'intérieur a une courbure de Gauss négative, l'extérieur a une courbure de Gauss positive, et la courbure totale est en effet égale à 0.