Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
vignette|De gauche à droite : une surface de courbure de Gauss négative (un hyperboloïde), une surface de courbure nulle (un cylindre), et une surface de courbure positive (une sphère). vignette|Certains points du tore sont de courbure positive (points elliptiques) et d'autres de courbure négative (points hyperboliques) La courbure de Gauss, parfois aussi appelée courbure totale, d'une surface paramétrée X en X(P) est le produit des courbures principales. De manière équivalente, la courbure de Gauss est le déterminant de l'endomorphisme de Weingarten. En mécanique, les surfaces matérielles dont la courbure de Gauss est non nulle sont plus rigides que celles dont la courbure de Gauss est nulle, toutes choses égales par ailleurs. En termes courants, les coques sont plus rigides que les plaques. En effet, une déformation d'une coque implique une modification de sa métrique, ce qui n'est pas le cas (au premier ordre) pour une plaque ou plus généralement pour une surface sans courbure de Gauss. On classifie les points d'une surface en fonction de la courbure de Gauss de la surface en ce point. Un point où la courbure de Gauss est strictement positive est dit elliptique. Tels sont les points d'un ellipsoïde, d'un hyperboloïde à deux nappes ou d'un paraboloïde elliptique. Les deux courbures principales y sont de même signe. Si, de plus, elles sont égales, le point est un ombilic. Tels sont les points d'une sphère, ou les deux sommets d'un ellipsoïde de révolution. Un point où la courbure de Gauss est nulle est dit parabolique. L'une au moins des courbures principales y est nulle. C'est le cas des points d'un cylindre ou d'un cône, car la courbure le long d'une génératrice du cylindre passant par le point est nulle. C'est également le cas de toute surface développable. Si les deux courbures principales sont nulles, le point est un méplat. Dans le plan, tous les points sont des méplats. Un point où la courbure de Gauss est strictement négative est dit hyperbolique. En un tel point, les deux courbures principales sont de signe contraire.
Romain Christophe Rémy Fleury, Haoye Qin, Aleksi Antoine Bossart, Zhechen Zhang
Pedro Miguel Nunes Pereira de Almeida Reis, Celestin Vallat, Tian Chen, Tomohiko Sano, Samuel Jean Bernard Poincloux