thumb|Hyperbole obtenue comme intersection d'un cône et d'un plan parallèle à l'axe du cône.Si l'on incline légèrement le plan, l'intersection sera encore une hyperbole tant que l'angle d'inclinaison reste inférieur à l'angle que fait une génératrice avec l'axe du cône.
En mathématiques, une hyperbole est une courbe plane obtenue comme la double intersection d'un double cône de révolution avec un plan. Elle peut également être définie comme conique d'excentricité supérieure à 1, ou comme ensemble des points dont la différence des distances à deux points fixes est constante.
Le nom d'« hyperbole » (application par excès) lui est donné par Apollonios de Perga, remarquant, dans sa construction, que l'aire du carré construit sur l'ordonnée excède l'aire d'un rectangle de hauteur fixe construit sur l'abscisse (voir section Histoire).
Une hyperbole est constituée de deux branches disjointes symétriques l'une de l'autre et possédant deux asymptotes communes.
On peut rencontrer l'hyperbole dans de nombreuses circonstances :
lors de la représentation graphique de la fonction inverse, et de celle de toutes les fonctions qui lui sont associées : ,
dans l'ombre créée par le pourtour (ou un abat-jour circulaire) d'une source de lumière sur un mur
dans la trajectoire de certains corps dans l'espace
dans les interférences produites par deux sources d'ondulations de même fréquence
dans la courbe suivie, pendant une journée, par l'extrémité de l'ombre du gnomon d'un cadran solaire de style polaire.
L'hyperbole intervient dans d'autres objets mathématiques comme les hyperboloïdes, le paraboloïde hyperbolique, les fonctions hyperboliques (sinh, cosh, tanh). Sa quadrature, c'est-à-dire le calcul de l'aire comprise entre une portion d'hyperbole et son axe principal, est à l'origine de la création de la fonction logarithme.
thumb|Arc d'hyperbole dessinée par l'ombre créée par une lampe.
On considère un cône de révolution engendré par la rotation d'une droite (OA) autour d'un axe (Ox) et on appelle θ l'angle géométrique entre ces deux droites.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En géométrie euclidienne, une conique est une courbe plane algébrique, définie initialement comme l’intersection d'un cône de révolution (supposé prolongé à l’infini de part et d’autre du sommet) avec un plan. Lorsque le plan de coupe ne passe pas par le sommet du cône, la conique est dite non dégénérée et réalise l’une des trois formes de courbe suivantes : ellipse, parabole ou hyperbole (le cercle étant un cas particulier de l'ellipse, parfois appelé quatrième forme). Ces courbes sont caractérisées par un paramètre réel appelé excentricité.
Infobox Polytope | nom = Ellipse | image = Ellipse infobox.gif | légende = Représentation d'une ellipse legend|texte=F et F|Foyers | type = Section conique | aire = | périmètre = | propriétés = En géométrie, une ellipse est une courbe plane fermée obtenue par l’intersection d’un cône de révolution avec un plan, à condition que celui-ci coupe l'axe de rotation du cône ou du cylindre : c'est une conique d'excentricité strictement comprise entre 0 et 1.
vignette|Une parabole représentée par la fonction f(x)=x. La parabole est une courbe plane, symétrique par rapport à un axe, ayant approximativement la forme d'un U dont les branches s'écarteraient indéfiniment. Cette courbe intervient dans les problèmes les plus élémentaires de mécanique ou de mathématiques. En effet la trajectoire d'un projectile qui n'est soumis qu'à la pesanteur est une parabole, ou encore, en mathématiques, la représentation graphique des polynômes de degré 2 est une parabole.
This thesis is a study of the global well-posedness of the Cauchy problems for half-wave maps from the Minkowski space of dimension n+1 to the 2-dimensional sphere and the hyperbolic plane. The work is mainly based on the results from Krieger-Sire 17' in ...
We develop a very general version of the hyperbola method which extends the known method by Blomer and Brudern for products of projective spaces to complete smooth split toric varieties. We use it to count Campana points of bounded log-anticanonical height ...
Palaiseau2024
,
Reducing the modal share of car travel in commuting implies challenging meanings of everyday mobility that tie commuting to driving. Existing research has focussed on describing ways in which everyday mobility is meaningful. However, why shifts in meanings ...