Résumé
thumb|Hyperbole obtenue comme intersection d'un cône et d'un plan parallèle à l'axe du cône.Si l'on incline légèrement le plan, l'intersection sera encore une hyperbole tant que l'angle d'inclinaison reste inférieur à l'angle que fait une génératrice avec l'axe du cône. En mathématiques, une hyperbole est une courbe plane obtenue comme la double intersection d'un double cône de révolution avec un plan. Elle peut également être définie comme conique d'excentricité supérieure à 1, ou comme ensemble des points dont la différence des distances à deux points fixes est constante. Le nom d'« hyperbole » (application par excès) lui est donné par Apollonios de Perga, remarquant, dans sa construction, que l'aire du carré construit sur l'ordonnée excède l'aire d'un rectangle de hauteur fixe construit sur l'abscisse (voir section Histoire). Une hyperbole est constituée de deux branches disjointes symétriques l'une de l'autre et possédant deux asymptotes communes. On peut rencontrer l'hyperbole dans de nombreuses circonstances : lors de la représentation graphique de la fonction inverse, et de celle de toutes les fonctions qui lui sont associées : , dans l'ombre créée par le pourtour (ou un abat-jour circulaire) d'une source de lumière sur un mur dans la trajectoire de certains corps dans l'espace dans les interférences produites par deux sources d'ondulations de même fréquence dans la courbe suivie, pendant une journée, par l'extrémité de l'ombre du gnomon d'un cadran solaire de style polaire. L'hyperbole intervient dans d'autres objets mathématiques comme les hyperboloïdes, le paraboloïde hyperbolique, les fonctions hyperboliques (sinh, cosh, tanh). Sa quadrature, c'est-à-dire le calcul de l'aire comprise entre une portion d'hyperbole et son axe principal, est à l'origine de la création de la fonction logarithme. thumb|Arc d'hyperbole dessinée par l'ombre créée par une lampe. On considère un cône de révolution engendré par la rotation d'une droite (OA) autour d'un axe (Ox) et on appelle θ l'angle géométrique entre ces deux droites.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.