Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'inférence statistique, la suffisance et l'exhaustivité, en soulignant l'importance de statistiques suffisantes et le rôle de statistiques complètes dans la réduction des données.
Explore les effets du rouge sur l'attractivité, la désirabilité et le statut, en mettant l'accent sur l'analyse statistique et les défis de la réplication et du biais de publication.
Explore le surajustement, la validation croisée et la régularisation dans l'apprentissage automatique, en mettant l'accent sur la complexité du modèle et l'importance de la force de régularisation.
Explore l'approche scientifique, la découverte de la radioactivité et les principes fondamentaux de la métrologie, en mettant l'accent sur l'expérimentation, l'analyse des erreurs et les techniques d'étalonnage.
Introduit la méthode k-Nearest Neighbors et l'expansion des fonctionnalités pour l'apprentissage non linéaire de la machine par des transformations polynômes.
Explore les générateurs de nombres aléatoires, y compris les algorithmes Pseudo-RNG, les propriétés, les méthodes d'évaluation et les tests d'indépendance.