Publications associées (186)

From low-rank retractions to dynamical low-rank approximation and back

Daniel Kressner, Axel Elie Joseph Séguin, Gianluca Ceruti

In algorithms for solving optimization problems constrained to a smooth manifold, retractions are a well-established tool to ensure that the iterates stay on the manifold. More recently, it has been demonstrated that retractions are a useful concept for ot ...
Springer2024

Hausdorff dimension of fermions on a random lattice

Mattia Guerino Varrone

Geometric properties of lattice quantum gravity in two dimensions are studied numerically via Monte Carlo on Euclidean Dynamical Triangulations. A new computational method is proposed to simulate gravity coupled with fermions, which allows the study of int ...
Elsevier2024

Soft Robot Shape Estimation With IMUs Leveraging PCC Kinematics for Drift Filtering

Josephine Anna Eleanor Hughes, Francesco Stella

The control possibilities for soft robots have long been hindered by the need for reliable methods to estimate their configuration. Inertial measurement units (IMUs) can solve this challenge, but they are affected by well-known drift issues. This letter pr ...
Piscataway2024

A structured prediction approach for robot imitation learning

Aude Billard, Iason Batzianoulis, Anqing Duan

We propose a structured prediction approach for robot imitation learning from demonstrations. Among various tools for robot imitation learning, supervised learning has been observed to have a prominent role. Structured prediction is a form of supervised le ...
London2023

RMAML: Riemannian meta-learning with orthogonality constraints

Soumava Kumar Roy

Meta-learning is the core capability that enables intelligent systems to rapidly generalize their prior ex-perience to learn new tasks. In general, the optimization-based methods formalize the meta-learning as a bi-level optimization problem, that is a nes ...
ELSEVIER SCI LTD2023

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.