Ulam asked whether every connected Lie group can be represented on a countable structure. This is known in the linear case. We establish it for the first family of non-linear groups, namely in the nilpotent case. Further context is discussed to illustrate ...
For G a simple algebraic group over an algebraically closed field of characteristic 0, we determine the irreducible representations ρ:G→I(V), where I(V) denotes one of the classical groups SL(V), Sp(V), SO(V), such that ρ sends some distinguished unipotent ...
We define and study in terms of integral Iwahoriâ Hecke algebras a new class of geometric operators acting on the Bruhat-Tits building of connected reductive groups over p-adic fields. These operators, which we call U-operators, generalize the geometric n ...
We analyze the deformation theory of equivariant vector bundles. In particular, we provide an effective criterion for verifying whether all infinitesimal deformations preserve the equivariant structure. As an application, using rigidity of the Frobenius ho ...
Let F 2 C[x; y; z] be a constant-degree polynomial, and let A; B; C subset of C be finite sets of size n. We show that F vanishes on at most O(n(11/6))points of the Cartesian product A X B X C, unless F has a special group-related form. This improves a the ...
The special linear group G = SLn(Z[x(1), ... , x(k)]) (n at least 3 and k finite) is called the universal lattice. Let n be at least 4, and p be any real number in (1, infinity). The main result is the following: any finite index subgroup of G has the fixe ...
We develop an elementary algebraic method to compute the center of the principal block of a small quantum group associated with a complex semisimple Lie algebra at a root of unity. The cases of sl(3) and sl(4) are computed explicitly. This allows us to for ...
Let G be a connected reductive algebraic group over an algebraically closed field k,gamma is an element of g( k(( epsilon ))) a semisimple regular element, we introduce a fundamental domain F gamma for the affine Springer fibers X gamma. We show that the p ...
A linear algebraic group G defined over a field k is called special if every G-torsor over every field extension of k is trivial. In 1958 Grothendieck classified special groups in the case where the base field is algebraically closed. In this paper we desc ...
Numerical analysis of linear visco-elastic materials requires robust and stable methods to integrate partial differential equations in both space and time. In this paper, symmetric space-time finite element operators are derived for the first time for elem ...