Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit un apprentissage profond, de la régression logistique aux réseaux neuraux, soulignant la nécessité de traiter des données non linéairement séparables.
Couvre la mécanique du continuum, l'élasticité linéaire, l'équilibre des forces, la divergence, la discrétisation des éléments finis, la minimisation de l'énergie et la méthode de Newton.
Explore les méthodes itératives pour résoudre les systèmes linéaires, y compris les méthodes Jacobi et Gauss-Seidel, la factorisation Cholesky et le gradient conjugué préconditionné.
Couvre le concept de descente de gradient dans les cas scalaires, en se concentrant sur la recherche du minimum d'une fonction en se déplaçant itérativement dans la direction du gradient négatif.