Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In science and engineering, the parts-per notation is a set of pseudo-units to describe small values of miscellaneous dimensionless quantities, e.g. mole fraction or mass fraction. Since these fractions are quantity-per-quantity measures, they are pure numbers with no associated units of measurement. Commonly used are parts-per-million (ppm, 10−6), parts-per-billion (ppb, 10−9), parts-per-trillion (ppt, 10−12) and parts-per-quadrillion (ppq, 10−15). This notation is not part of the International System of Units (SI) system and its meaning is ambiguous. Parts-per notation is often used describing dilute solutions in chemistry, for instance, the relative abundance of dissolved minerals or pollutants in water. The quantity "1 ppm" can be used for a mass fraction if a water-borne pollutant is present at one-millionth of a gram per gram of sample solution. When working with aqueous solutions, it is common to assume that the density of water is 1.00 g/mL. Therefore, it is common to equate 1 kilogram of water with 1 L of water. Consequently, 1 ppm corresponds to 1 mg/L and 1 ppb corresponds to 1 μg/L. Similarly, parts-per notation is used also in physics and engineering to express the value of various proportional phenomena. For instance, a special metal alloy might expand 1.2 micrometers per meter of length for every degree Celsius and this would be expressed as Parts-per notation is also employed to denote the change, stability, or uncertainty in measurements. For instance, the accuracy of land-survey distance measurements when using a laser rangefinder might be 1 millimeter per kilometer of distance; this could be expressed as "Accuracy = 1 ppm." Parts-per notations are all dimensionless quantities: in mathematical expressions, the units of measurement always cancel. In fractions like "2 nanometers per meter" so the quotients are pure-number coefficients with positive values less than or equal to 1. When parts-per notations, including the percent symbol (%), are used in regular prose (as opposed to mathematical expressions), they are still pure-number dimensionless quantities.
Jürgen Brugger, Lorenz Hagelüken