Résumé
The gram (originally gramme; SI unit symbol g) is a unit of mass in the International System of Units (SI) equal to one one thousandth of a kilogram. Originally defined as of 1795 as "the absolute weight of a volume of pure water equal to the cube of the hundredth part of a metre [1 cm3], and at the temperature of melting ice", the defining temperature (~0 °C) was later changed to 4 °C, the temperature of maximum density of water. However, by the late 19th century, there was an effort to make the base unit the kilogram and the gram a derived unit. In 1960, the new International System of Units defined a gram as one one-thousandth of a kilogram (i.e., one gram is 1×10−3 kg). The kilogram, as of 2019, is defined by the International Bureau of Weights and Measures from the fixed numerical value of the Planck constant (h). The only unit symbol for gram that is recognised by the International System of Units (SI) is "g" following the numeric value with a space, as in "640 g" to stand for "640 grams" in the English language. The SI does not permit the use of abbreviations such as "gr" (which is the symbol for grains), "gm" ("g⋅m" is the SI symbol for gram-metre) or "Gm" (the SI symbol for gigametre). The word gramme was adopted by the French National Convention in its 1795 decree revising the metric system as replacing the gravet introduced in 1793. Its definition remained that of the weight (poids) of a cubic centimetre of water. French gramme was taken from the Late Latin term gramma. This word—ultimately from Greek γράμμα (grámma), "letter"—had adopted a specialised meaning in Late Antiquity of "one twenty-fourth part of an ounce" (two oboli), corresponding to about 1.14 modern grams. This use of the term is found in the carmen de ponderibus et mensuris ("poem about weights and measures") composed around 400 AD. There is also evidence that the Greek γράμμα was used in the same sense at around the same time, in the 4th century, and survived in this sense into Medieval Greek, while the Latin term did not remain current in Medieval Latin and was recovered in Renaissance scholarship.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
PHYS-100: Advanced physics I (mechanics)
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
PHYS-423: Plasma I
Following an introduction of the main plasma properties, the fundamental concepts of the fluid and kinetic theory of plasmas are introduced. Applications concerning laboratory, space, and astrophysica
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Afficher plus
Séances de cours associées (27)
Fonctions de distribution plasmatique
Couvre le concept de moments de la fonction de distribution dans la physique des plasmas et leur relation à la dynamique des fluides.
Physique avancée I : Momentum, énergie et mouvement angulaire
Couvre l'élan, l'énergie et l'élan angulaire dans divers scénarios.
Physique avancée I: Dynamique rotative
Couvre des sujets avancés dans la dynamique rotationnelle, y compris des effets gyroscopiques et des exemples de mouvement rotationnel.
Afficher plus
Concepts associés (20)
Parts-per notation
In science and engineering, the parts-per notation is a set of pseudo-units to describe small values of miscellaneous dimensionless quantities, e.g. mole fraction or mass fraction. Since these fractions are quantity-per-quantity measures, they are pure numbers with no associated units of measurement. Commonly used are parts-per-million (ppm, 10−6), parts-per-billion (ppb, 10−9), parts-per-trillion (ppt, 10−12) and parts-per-quadrillion (ppq, 10−15). This notation is not part of the International System of Units (SI) system and its meaning is ambiguous.
Unité de mesure
En physique et en métrologie, une est une . Une unité de mesure peut être définie à partir de constantes fondamentales ou par un étalon, utilisé pour la mesure. Les systèmes d'unités, définis en cherchant le plus large accord dans le domaine considéré, sont rendus nécessaires par la méthode scientifique, dont l'un des fondements est la reproductibilité des expériences (donc des mesures), ainsi que par le développement des échanges d'informations commerciales ou industrielles.
Molécule d'eau
La molécule d’eau, de formule , est le constituant essentiel de l’eau pure. Celle-ci contient également des ions résultant de l’autoprotolyse de l’eau selon l’équation d'équilibre : H + OH (ou 2 HO + OH). L’eau pure n’est pas présente dans la nature et doit être obtenue par des processus physiques. Cette molécule a des propriétés complexes à cause de sa polarisation (voir la section Nature dipolaire). L’eau à pression ambiante (environ un bar) est gazeuse au-dessus de , solide en dessous de et liquide entre les deux.
Afficher plus