Spherical EarthSpherical Earth or Earth's curvature refers to the approximation of figure of the Earth as a sphere. The earliest documented mention of the concept dates from around the 5th century BC, when it appears in the writings of Greek philosophers. In the 3rd century BC, Hellenistic astronomy established the roughly spherical shape of Earth as a physical fact and calculated the Earth's circumference. This knowledge was gradually adopted throughout the Old World during Late Antiquity and the Middle Ages.
Earth's circumferenceEarth's circumference is the distance around Earth. Measured around the equator, it is . Measured around the poles, the circumference is . Measurement of Earth's circumference has been important to navigation since ancient times. The first known scientific measurement and calculation was done by Eratosthenes, by comparing altitudes of the mid-day sun at two places a known north–south distance apart. He achieved a great degree of precision in his computation. Treating the Earth as a sphere, its circumference would be its single most important measurement.
Expéditions géodésiques françaisesthumb|Itinéraire de l'une des expéditions françaises des années 1730-1740 pour déterminer la forme exacte de la Terre. Carte de 1749. Au cours du , l'Académie des sciences organisa plusieurs expéditions scientifiques, outre-mers, afin de pouvoir répondre à un certain nombre de questions scientifiques, notamment sur la forme exacte de la Terre (était-elle parfaitement sphérique, aplatie aux pôles ou aplatie à l'équateur ?).
Distance (géographie)La distance en géographie peut être entendue comme la longueur de l'intervalle ou du trajet séparant deux ou plusieurs lieux. La distance est la marque d'une séparation, son franchissement nécessite obligatoirement une dépense énergétique. Les formules contenues dans cet article permettent de calculer les distances entre des points qui sont définis par leurs coordonnées géographiques à l'aide de la notion de latitude et de longitude. Calculer la distance entre deux coordonnées géographiques nécessite un certain degré d'abstraction.
Ocean surface topographyOcean surface topography or sea surface topography, also called ocean dynamic topography, are highs and lows on the ocean surface, similar to the hills and valleys of Earth's land surface depicted on a topographic map. These variations are expressed in terms of average sea surface height (SSH) relative to Earth's geoid. The main purpose of measuring ocean surface topography is to understand the large-scale ocean circulation. Unaveraged or instantaneous sea surface height (SSH) is most obviously affected by the tidal forces of the Moon and the Sun acting on Earth.
Geographic coordinate conversionIn geodesy, conversion among different geographic coordinate systems is made necessary by the different geographic coordinate systems in use across the world and over time. Coordinate conversion is composed of a number of different types of conversion: format change of geographic coordinates, conversion of coordinate systems, or transformation to different geodetic datums. Geographic coordinate conversion has applications in cartography, surveying, navigation and geographic information systems.
Distance lunaireEn astronomie, la distance lunaire est la distance moyenne entre le centre de la Terre et le centre de la Lune, qui vaut environ . La distance réelle varie en fonction de la position de la Lune sur son orbite, entre au périgée et à l'apogée. Des mesures de haute précision de la distance lunaire sont faites en mesurant le temps de parcours de la lumière entre des stations Lidar sur Terre et des rétroréflecteurs placés sur la Lune. La Lune s'éloigne de la Terre à une vitesse moyenne de , d'après le Lunar Laser Ranging Experiment.
LoxodromieUne loxodromie (du grec lox(o)- et -dromie course (δρόμος) oblique (λοξός), en anglais rhumb line), est une courbe qui coupe les méridiens d'une sphère sous un angle constant. C'est la trajectoire suivie par un navire qui suit un cap constant. Une route loxodromique est représentée sur une carte marine ou aéronautique en projection de Mercator par une ligne droite, mais elle ne représente pas la distance la plus courte entre deux points. En effet, la route la plus courte, appelée route orthodromique ou orthodromie, est un arc de grand cercle de la sphère.
Courbure moyenneEn mathématiques, on appelle courbure moyenne d'une surface la moyenne des courbures minimale et maximale. Elle est notée (ou encore Km, ou parfois H). C'est un nombre réel, dont le signe dépend du choix fait pour orienter la surface. S'il est relativement simple de définir le rayon de courbure d'une courbe plane, pour une surface les choses se compliquent. On définit alors un analogue comme suit : en un point, on définit un axe, le vecteur normal à la surface. On imagine ensuite un plan tournant sur cet axe.