En mathématiques, on appelle courbure moyenne d'une surface la moyenne des courbures minimale et maximale. Elle est notée (ou encore Km, ou parfois H). C'est un nombre réel, dont le signe dépend du choix fait pour orienter la surface. S'il est relativement simple de définir le rayon de courbure d'une courbe plane, pour une surface les choses se compliquent. On définit alors un analogue comme suit : en un point, on définit un axe, le vecteur normal à la surface. On imagine ensuite un plan tournant sur cet axe. Ce plan intersecte la surface considérée en une courbe. Il permet donc de définir une infinité de rayons de courbure. Ces rayons définissent des courbures (inverse du rayon) maximale et minimale (en tenant compte du signe, c’est-à-dire de l’orientation par rapport au vecteur normal). On les appelle les courbures principales, et les plans contenant ces courbures sont représentés ci-contre. Les courbures principales sont donc les courbures, au point considéré, des deux courbes rouges intersections de ces plans et de la surface. À partir de ces deux courbures, plusieurs notions de courbure totale peuvent être définies ; les plus importantes sont la courbure de Gauss et la courbure moyenne. La courbure moyenne est définie comme la moyenne des deux courbures principales, soit La notion de courbure moyenne a été définie par Sophie Germain lors de son étude des vibrations d'une membrane. Supposons que la surface soit donnée par une équation , où f est une fonction de classe . Notons en indice les variables par rapport auxquelles les dérivées sont calculées. Alors, la courbure moyenne au point de paramètre vaut : On reconnaît au numérateur l'expression utilisée dans l'équation aux dérivées partielles caractérisant les surfaces minimales, ces dernières étant de courbure moyenne nulle. Soit une surface paramétrée au moyen de deux paramètres u et v, et soit la première forme fondamentale, la seconde forme fondamentale. Alors la courbure moyenne vaut : Courbure Courbure de Gauss Variété riemannienne Géométrie différent

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (5)
ME-411: Mechanics of slender structures
Analysis of the mechanical response and deformation of slender structural elements.
CS-457: Geometric computing
This course will cover mathematical concepts and efficient numerical methods for geometric computing. We will explore the beauty of geometry and develop algorithms to simulate and optimize 2D and 3D g
MATH-333: Selected chapters of geometry
Après avoir traité la théorie de base des courbes et surfaces dans le plan et l'espace euclidien, nous étudierons certains chapitres choisis : surfaces minimales, surfaces à courbure moyenne constante
Afficher plus
Publications associées (32)

Umbrella Meshes: Elastic Mechanisms for Freeform Shape Deployment

Mark Pauly, Florin Isvoranu, Uday Kusupati, Tian Chen, Yingying Ren, Davide Pellis

We present a computational inverse design framework for a new class of volumetric deployable structures that have compact rest states and deploy into bending-active 3D target surfaces. Umbrella meshes consist of elastic beams, rigid plates, and hinge joint ...
2022

GarNet++: Improving Fast and Accurate Static 3D Cloth Draping by Curvature Loss

Pascal Fua, Mathieu Salzmann, Victor Constantin, Shaifali Parashar, Erhan Gündogdu

In this paper, we tackle the problem of static 3D cloth draping on virtual human bodies. We introduce a two-stream deep network model that produces a visually plausible draping of a template cloth on virtual 3D bodies by extracting features from both the b ...
2020
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.