In mathematics, the quarter periods K(m) and iK ′(m) are special functions that appear in the theory of elliptic functions.
The quarter periods K and iK ′ are given by
and
When m is a real number, 0 < m < 1, then both K and K ′ are real numbers. By convention, K is called the real quarter period and iK ′ is called the imaginary quarter period. Any one of the numbers m, K, K ′, or K ′/K uniquely determines the others.
These functions appear in the theory of Jacobian elliptic functions; they are called quarter periods because the elliptic functions and are periodic functions with periods and However, the function is also periodic with a smaller period (in terms of the absolute value) than , namely .
The quarter periods are essentially the elliptic integral of the first kind, by making the substitution . In this case, one writes instead of , understanding the difference between the two depends notationally on whether or is used. This notational difference has spawned a terminology to go with it:
is called the parameter
is called the complementary parameter
is called the elliptic modulus
is called the complementary elliptic modulus, where
the modular angle, where
the complementary modular angle. Note that
The elliptic modulus can be expressed in terms of the quarter periods as
and
where and are Jacobian elliptic functions.
The nome is given by
The complementary nome is given by
The real quarter period can be expressed as a Lambert series involving the nome:
Additional expansions and relations can be found on the page for elliptic integrals.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In mathematics, the modular lambda function λ(τ) is a highly symmetric Holomorphic function on the complex upper half-plane. It is invariant under the fractional linear action of the congruence group Γ(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the modular curve X(2). Over any point τ, its value can be described as a cross ratio of the branch points of a ramified double cover of the projective line by the elliptic curve , where the map is defined as the quotient by the [−1] involution.
In mathematics, specifically the theory of elliptic functions, the nome is a special function that belongs to the non-elementary functions. This function is of great importance in the description of the elliptic functions, especially in the description of the modular identity of the Jacobi theta function, the Hermite elliptic transcendents and the Weber modular functions, that are used for solving equations of higher degrees. The nome function is given by where and are the quarter periods, and and are the fundamental pair of periods, and is the half-period ratio.
En mathématiques, les fonctions elliptiques de Jacobi sont des fonctions elliptiques d'une grande importance historique. Introduites par Carl Gustav Jakob Jacobi vers 1830, elles ont des applications directes, par exemple dans l'équation du pendule. Elles présentent aussi des analogies avec les fonctions trigonométriques, qui sont mises en valeur par le choix des notations sn et cn, qui rappellent sin et cos. Si les fonctions elliptiques thêta de Weierstrass semblent mieux adaptées aux considérations théoriques, les problèmes physiques pratiques font plus appel aux fonctions de Jacobi.
We consider several "provably secure" hash functions that compute simple sums in a well chosen group (G,*). Security properties of such functions provably translate in a natural way to computational problems in G that are simple to define and possibly also ...