In descriptive statistics, the interquartile range (IQR) is a measure of statistical dispersion, which is the spread of the data. The IQR may also be called the midspread, middle 50%, fourth spread, or H‐spread. It is defined as the difference between the 75th and 25th percentiles of the data. To calculate the IQR, the data set is divided into quartiles, or four rank-ordered even parts via linear interpolation. These quartiles are denoted by Q1 (also called the lower quartile), Q2 (the median), and Q3 (also called the upper quartile). The lower quartile corresponds with the 25th percentile and the upper quartile corresponds with the 75th percentile, so IQR = Q3 − Q1. The IQR is an example of a trimmed estimator, defined as the 25% trimmed range, which enhances the accuracy of dataset statistics by dropping lower contribution, outlying points. It is also used as a robust measure of scale It can be clearly visualized by the box on a box plot. Unlike total range, the interquartile range has a breakdown point of 25%, and is thus often preferred to the total range. The IQR is used to build box plots, simple graphical representations of a probability distribution. The IQR is used in businesses as a marker for their income rates. For a symmetric distribution (where the median equals the midhinge, the average of the first and third quartiles), half the IQR equals the median absolute deviation (MAD). The median is the corresponding measure of central tendency. The IQR can be used to identify outliers (see below). The IQR also may indicate the skewness of the dataset. The quartile deviation or semi-interquartile range is defined as half the IQR. The IQR of a set of values is calculated as the difference between the upper and lower quartiles, Q3 and Q1. Each quartile is a median calculated as follows. Given an even 2n or odd 2n+1 number of values first quartile Q1 = median of the n smallest values third quartile Q3 = median of the n largest values The second quartile Q2 is the same as the ordinary median.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (17)
MATH-131: Probability and statistics
Le cours présente les notions de base de la théorie des probabilités et de l'inférence statistique. L'accent est mis sur les concepts principaux ainsi que les méthodes les plus utilisées.
CS-401: Applied data analysis
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
CS-411: Digital education
This course addresses the relationship between specific technological features and the learners' cognitive processes. It also covers the methods and results of empirical studies: do student actually l
Afficher plus
Publications associées (38)
Concepts associés (22)
Médiane (statistiques)
En théorie des probabilités et en statistiques, la médiane est une valeur qui sépare la moitié inférieure et la moitié supérieure des termes d’une série statistique quantitative ou d’une variable aléatoire réelle. On peut la définir aussi pour une variable ordinale. La médiane est un indicateur de tendance centrale. Par comparaison avec la moyenne, elle est insensible aux valeurs extrêmes mais son calcul est un petit peu plus complexe. En particulier, elle ne peut s’obtenir à partir des médianes de sous-groupes.
Indicateur de dispersion
En statistique, un indicateur de dispersion mesure la variabilité des valeurs d’une série statistique. Il est toujours positif et d’autant plus grand que les valeurs de la série sont étalées. Les plus courants sont la variance, l'écart-type et l'écart interquartile. Ces indicateurs complètent l’information apportée par les indicateurs de position ou de tendance centrale, mesurés par la moyenne ou la médiane. Dans la pratique, c'est-à-dire dans l'industrie, les laboratoires ou en métrologie, où s'effectuent des mesurages, cette dispersion est estimée par l'écart type.
Valeur absolue des écarts
En statistique, la déviation absolue moyenne (ou simplement déviation moyenne) d'un ensemble est la moyenne (ou valeur prévue) des déviations absolues par rapport à un point central d'une série statistique. C'est une statistique sommaire de dispersion ou de variabilité statistique, et elle peut être associée à toute mesure à une tendance centrale (moyenne, médiane, mode...). La déviation absolue d'un élément a d'un ensemble de données x par rapport à un réel est a – x.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.