Toroidal polyhedronIn geometry, a toroidal polyhedron is a polyhedron which is also a toroid (a g-holed torus), having a topological genus (g) of 1 or greater. Notable examples include the Császár and Szilassi polyhedra. Toroidal polyhedra are defined as collections of polygons that meet at their edges and vertices, forming a manifold as they do. That is, each edge should be shared by exactly two polygons, and at each vertex the edges and faces that meet at the vertex should be linked together in a single cycle of alternating edges and faces, the link of the vertex.
Angular defectIn geometry, the (angular) defect (or deficit or deficiency) means the failure of some angles to add up to the expected amount of 360° or 180°, when such angles in the Euclidean plane would. The opposite notion is the excess. Classically the defect arises in two ways: the defect of a vertex of a polyhedron; the defect of a hyperbolic triangle; and the excess also arises in two ways: the excess of a toroidal polyhedron.
Théorème de la boule chevelueEn mathématiques, le théorème de la boule chevelue est un résultat de topologie différentielle. Il s'applique à une sphère supportant en chaque point un vecteur, imaginé comme un cheveu, tangent à la surface. Il affirme que la fonction associant à chaque point de la sphère le vecteur admet au moins un point de discontinuité, ce qui revient à dire que la coiffure contient un épi, ou qu'il y a des cheveux nuls, c'est-à-dire de la calvitie. De manière plus rigoureuse, un champ de vecteurs continu sur une sphère de dimension paire s'annule en au moins un point.
Hemicube (geometry)In abstract geometry, a hemicube is an abstract, regular polyhedron, containing half the faces of a cube. It can be realized as a projective polyhedron (a tessellation of the real projective plane by three quadrilaterals), which can be visualized by constructing the projective plane as a hemisphere where opposite points along the boundary are connected and dividing the hemisphere into three equal parts. It has three square faces, six edges, and four vertices.
Polyhedral combinatoricsPolyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes. Research in polyhedral combinatorics falls into two distinct areas. Mathematicians in this area study the combinatorics of polytopes; for instance, they seek inequalities that describe the relations between the numbers of vertices, edges, and faces of higher dimensions in arbitrary polytopes or in certain important subclasses of polytopes, and study other combinatorial properties of polytopes such as their connectivity and diameter (number of steps needed to reach any vertex from any other vertex).
Projective polyhedronIn geometry, a (globally) projective polyhedron is a tessellation of the real projective plane. These are projective analogs of spherical polyhedra – tessellations of the sphere – and toroidal polyhedra – tessellations of the toroids. Projective polyhedra are also referred to as elliptic tessellations or elliptic tilings, referring to the projective plane as (projective) elliptic geometry, by analogy with spherical tiling, a synonym for "spherical polyhedron".
TétrahémihexaèdreEn géométrie, le tétrahémihexaèdre, appelé aussi heptaèdre de Reinhardt (du nom de Curt Reinhardt, qui l'a inventé en 1885) est un polyèdre uniforme non convexe, indexé sous le nom U4. Il a 6 sommets, 12 arêtes, et 7 faces : 4 triangulaires (qui font partie de celles de l'octaèdre régulier) et 3 carrées. C'est le seul polyèdre uniforme non prismatique avec un nombre impair de faces. Il est le seul polyèdre uniforme avec une caractéristique d'Euler égale à 1 et est par conséquent une représentation du plan projectif réel très similaire à la surface romaine.
Topologie combinatoireEn mathématiques, la topologie combinatoire est l'ancêtre de la topologie algébrique. À l'époque, les invariants topologiques (par exemple les nombres de Betti) étaient construits à l'aide de décompositions combinatoires des espaces, comme les décompositions simpliciales. Le changement de nom de la discipline reflète un changement de nature dans les invariants construits, effectué dans les années 1930 par Heinz Hopf, Leopold Vietoris et Walther Mayer. On attribue parfois à Emmy Noether une influence initiale dans cette évolution.
Somme connexeEn mathématiques, et plus précisément en topologie, la somme connexe est une opération qui s'effectue sur des variétés connexes de même dimension. La somme connexe de deux variétés connexes de même dimension n est obtenue en retirant à chacune un petit voisinage d'un point formé d'une boule ouverte, et en recollant les deux variétés ainsi obtenues (techniquement : en prenant l'espace quotient de leur union disjointe) le long des deux sphères Sn–1 apparues.
Closed manifoldIn mathematics, a closed manifold is a manifold without boundary that is compact. In comparison, an open manifold is a manifold without boundary that has only non-compact components. The only connected one-dimensional example is a circle. The sphere, torus, and the Klein bottle are all closed two-dimensional manifolds. The real projective space RPn is a closed n-dimensional manifold. The complex projective space CPn is a closed 2n-dimensional manifold. A line is not closed because it is not compact.