Solide de PlatonEn géométrie euclidienne, un solide de Platon est l’un des cinq polyèdres à la fois réguliers et convexes. En référence au nombre de faces (4, 6, 8, 12 et 20) qui les composent, ils sont nommés couramment tétraèdre (régulier), hexaèdre (régulier) ou cube, octaèdre (régulier), dodécaèdre (régulier) et icosaèdre (régulier), les adjectifs « régulier » et « convexe » étant souvent implicites ou omis quand le contexte le permet. Depuis les mathématiques grecques, les solides de Platon furent un sujet d’étude des géomètres en raison de leur esthétique et de leurs symétries.
HexacosichoreEn géométrie, l'hexacosichore ou « 600-cellules » est le 4-polytope régulier convexe qui a comme symbole de Schläfli {3, 3, 5}. Il est composé de 600 cellules tétraédriques dont 20 qui se rencontrent à chaque sommet. Ensemble, ils forment triangulaires, 720 arêtes et 120 sommets. Les arêtes forment 72 décagones réguliers plans. Chaque sommet du 600-cellules est le sommet de six de ces décagones.
HécatonicosachoreIn geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {5,3,3}. It is also called a C120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, hecatonicosachoron, dodecacontachoron and hecatonicosahedroid. The boundary of the 120-cell is composed of 120 dodecahedral cells with 4 meeting at each vertex. Together they form 720 pentagonal faces, 1200 edges, and 600 vertices.
Icosahedral symmetryIn mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual of the icosahedron) and the rhombic triacontahedron. Every polyhedron with icosahedral symmetry has 60 rotational (or orientation-preserving) symmetries and 60 orientation-reversing symmetries (that combine a rotation and a reflection), for a total symmetry order of 120.
IcositétrachoreL'icositétrachore, ou « 24-cellules » est un 4-polytope régulier convexe. Il est spécifique à la dimension 4 dans le sens où il ne possède aucun équivalent dans une autre dimension. On le dénomme aussi « 24-cellules », « icositétratope », ou « hypergranatoèdre ». On peut définir un icositétrachore dans au moyen des sommets de coordonnées , ainsi que ceux obtenus en permutant ces coordonnées. Ils sont au nombre de 24.
Polyèdre sphériquevignette| Icosaèdre tronqué et ballon de football. Un polyèdre sphérique est constitué par un certain nombre d'arcs de grand cercle d'une même sphère (les arêtes) dont les extrémités (les sommets) sont communes à plusieurs arêtes ; les portions de sphère délimitées par les arêtes sont les faces. Autrement dit, un polyèdre sphérique est un pavage de la sphère par des polygones sphériques. Par abus de langage on appelle aussi polyèdre sphérique un polyèdre réalisant une approximation de la sphère, comme le dodécaèdre régulier, l'icosaèdre régulier ou l'icosaèdre tronqué.
IcosaèdreEn géométrie, un icosaèdre est un solide de dimension 3, de la famille des polyèdres, contenant exactement vingt faces. Le préfixe icosa-, d'origine grecque, signifie « vingt ». Il existe de nombreux polyèdres à vingt faces tels l'icosaèdre régulier convexe (appelé plus simplement icosaèdre si le contexte fait référence aux solides de Platon), l'icosaèdre rhombique, le pseudo-icosaèdre, le grand icosaèdre ou plusieurs solides de Johnson.
Polyèdre isoédriquevignette| Un jeu de dés isoédriques En géométrie, un polytope de dimension 3 (un polyèdre) ou plus est dit isoédrique lorsque ses faces sont identiques. Plus précisément, toutes les faces ne doivent pas être simplement isométriques, mais doivent être transitives, c'est-à-dire qu'elles doivent se trouver dans la même orbite de symétrie. En d'autres termes, pour toutes les faces A et B, il doit y avoir une symétrie de l'ensemble du solide par rotations et réflexions qui envoie A sur B.
Snub (geometry)In geometry, a snub is an operation applied to a polyhedron. The term originates from Kepler's names of two Archimedean solids, for the snub cube (cubus simus) and snub dodecahedron (dodecaedron simum). In general, snubs have chiral symmetry with two forms: with clockwise or counterclockwise orientation. By Kepler's names, a snub can be seen as an expansion of a regular polyhedron: moving the faces apart, twisting them about their centers, adding new polygons centered on the original vertices, and adding pairs of triangles fitting between the original edges.
Convex uniform honeycombIn geometry, a convex uniform honeycomb is a uniform tessellation which fills three-dimensional Euclidean space with non-overlapping convex uniform polyhedral cells. Twenty-eight such honeycombs are known: the familiar cubic honeycomb and 7 truncations thereof; the alternated cubic honeycomb and 4 truncations thereof; 10 prismatic forms based on the uniform plane tilings (11 if including the cubic honeycomb); 5 modifications of some of the above by elongation and/or gyration.