Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
L'icositétrachore, ou « 24-cellules » est un 4-polytope régulier convexe. Il est spécifique à la dimension 4 dans le sens où il ne possède aucun équivalent dans une autre dimension. On le dénomme aussi « 24-cellules », « icositétratope », ou « hypergranatoèdre ». On peut définir un icositétrachore dans au moyen des sommets de coordonnées , ainsi que ceux obtenus en permutant ces coordonnées. Ils sont au nombre de 24. On peut répartir ces sommets en trois familles dont chacune correspond aux sommets d'un hexadécachore : HexaDec[1] : et HexaDec[2] : et HexaDec[3] : et Si on regroupe ensemble deux de ces hexadécachores, on obtient les sommets d'un tesseract. Par exemple, les sommets de Hexadec[1] et Hexadec[2] donnent le tesseract suivant : (1,1,0,0) (1,0,0,1) (1,0,0,–1) (1,–1,0,0) carré de côtés (0,–1,0,1) et (0,–1,0,–1) (0,1,1,0) (0,0,1,1) (0,0,1,–1) (0,–1,1,0) translaté du précédant de (–1,0,1,0) pour former un cube, cube qu'on translate de (–1,0,–1,0) pour obtenir les derniers sommets : (0,1,–1,0) (0,0,–1,1) (0,0,–1,–1) (0,–1,–1,0) (–1,1,0,0) (–1,0,0,1) (–1,0,0,–1) (–1,–1,0,0) Les arêtes de l'icositétrachore sont ceux des trois tesseracts qu'on peut définir de la façon précédente. Dans l'exemple ci-dessus, ce sont aussi les segments joignant deux sommets distants de . Ils sont au nombre de 96. Chaque sommet appartient à huit arêtes. Les faces sont des triangles équilatéraux, dont les sommets sont distants de . Dans l'exemple ci-dessus, les sommets d'une face ont pour coordonnées , , , ou bien , , (ainsi que ceux obtenus par une même permutation), avec , , et . Ils sont au nombre de 96. Chaque face possède un et un seul sommet de chaque hexadécachore défini plus haut. Les cellules sont des octaèdres réguliers. Dans l'exemple précédent, huit octaèdres sont contenus dans les hyperplans d'équation , , , , et seize autres sont contenus dans les hyperplans d'équation . Il y a 24 cellules en tout. Le polytope dual de l'icositétrachore précédent possède pour sommets les points de coordonnées , ainsi que les points analogues obtenus par permutation des coordonnées, et les points de coordonnées .
Buddhima Ruwanmini Gamlath Gamlath Ralalage
Jiangtao Zhou, Zhechen Zhang, Yiping Wang, Jiachen Wang
Jian Wang, Matthias Finger, Lesya Shchutska, Qian Wang, Matthias Wolf, Varun Sharma, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Mingkui Wang, Zhirui Xu, Chao Wang, João Miguel das Neves Duarte, Tagir Aushev, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Thomas Muller, Ho Ling Li, Giuseppe Codispoti, Hua Zhang, Siyuan Wang, Peter Hansen, Daniel Gonzalez, Tao Huang, David Vannerom, Michele Bianco, Kun Shi, Wei Shi, Abhisek Datta, Wei Sun, Ji Hyun Kim, Donghyun Kim, Dipanwita Dutta, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Yi Wang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Matthias Weber, Muhammad Shoaib, Milos Dordevic, Vineet Kumar, Vladimir Petrov, Francesco Fiori, Quentin Python, Meng Xiao, Hao Liu, Sourav Sen, Yanlin Liu, Viktor Khristenko, Marco Trovato, Gurpreet Singh, Fan Xia, Xiao Wang, Bibhuprasad Mahakud, Jing Li, Rajat Gupta, Zhen Liu, Lei Feng, Muhammad Waqas, Hui Wang, Seungkyu Ha, Davide Cieri, Maren Tabea Meinhard, Giorgia Rauco, Ali Harb, Benjamin William Allen, Long Wang, Pratyush Das, Miao Hu, Lei Li