Trigonométrievignette|droite|Un triangle rectangle sur lequel est indiqué un angle Â, le côté adjacent à cet angle, le côté opposé à celui-ci, l'hypoténuse du triangle, et son angle droit. vignette|Cercle trigonométrique et angles remarquables vignette|droite|Planche sur la Trigonométrie, 1728 Cyclopaedia. La trigonométrie (du grec τρίγωνος / trígonos, « triangulaire », et μέτρον / métron, « mesure ») est une branche des mathématiques qui traite des relations entre distances et angles dans les triangles et des fonctions trigonométriques telles que sinus, cosinus, tangente.
Identité trigonométriqueUne identité trigonométrique est une relation impliquant des fonctions trigonométriques, vérifiée pour toutes les valeurs possibles des variables intervenant dans la relation. Ces identités peuvent servir à simplifier une expression comportant des fonctions trigonométriques ou à la transformer (par exemple pour en calculer une primitive). Elles constituent donc une « boîte à outils » utile pour la résolution de problèmes. Les fonctions trigonométriques sont définies géométriquement ou analytiquement.
RegiomontanusJohannes Müller von Königsberg (Unfinden, près de Königsberg (Bavière) le – Rome le ), plus connu sous son nom latin Regiomontanus, est un astronome, mathématicien et astrologue allemand. Ses traités (notamment De triangulis omnimodis, 1464) et ses commentaires sur l'Almageste de Ptolémée, sont à l'origine de la renaissance de la trigonométrie en Europe. L'astrologie lui doit un système de domification qui porte son nom. On l'a connu également sous d'autres noms, suivant les langues : Montereggio, Montroyal.
Sine and cosineIn mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted simply as and .
Fonction transcendanteEn mathématiques, une fonction ou une série formelle est dite transcendante si elle n'est pas algébrique, c'est-à-dire si elle n'est pas solution d'une équation polynomiale à coefficients polynomiaux par rapport à ses arguments. Cette notion est donc, au même titre que celle de nombre transcendant, un cas particulier de celle d'élément transcendant d'une algèbre sur un anneau commutatif, l'algèbre et l'anneau considérés étant ici soit les fonctions de certaines variables (à valeurs dans un anneau commutatif R) et les fonctions polynomiales en ces variables (à coefficients dans R), soit les séries formelles et les polynômes (en une ou plusieurs indéterminées).
Sinus verseLe sinus verse est une fonction trigonométrique peu utilisée de nos jours. Elle est généralement notée versin, vers ou encore sin v. et définie comme : Le sinus verse est une fonction introduite par les Indiens (dans le Surya Siddhanta (c. 400) et dans l'Āryabhaṭīya () dérivée de la notion de flèche. Tout comme le sinus indien (jya) c'est une longueur associée à un arc d'un cercle de rayon donné. Appelée utkrama-jya, elle correspond dans un cercle à la flèche de l'arc double, tout comme jya correspond à la demi-corde de l'arc double, c'est-à-dire R sin(θ).
Āryabhaṭa's sine tableĀryabhata's sine table is a set of twenty-four numbers given in the astronomical treatise Āryabhatiya composed by the fifth century Indian mathematician and astronomer Āryabhata (476–550 CE), for the computation of the half-chords of a certain set of arcs of a circle. The set of numbers appears in verse 12 in Chapter 1 Dasagitika of Aryabhatiya. It is not a table in the modern sense of a mathematical table; that is, it is not a set of numbers arranged into rows and columns.
Fonction trigonométriquethumb|upright=1.35|Toutes les valeurs des fonctions trigonométriques d'un angle θ peuvent être représentées géométriquement. En mathématiques, les fonctions trigonométriques permettent de relier les longueurs des côtés d'un triangle en fonction de la mesure des angles aux sommets. Plus généralement, ces fonctions sont importantes pour étudier les triangles et les polygones, les cercles (on les appelle alors fonctions circulaires) et modéliser des phénomènes périodiques.
Almagestethumb|Ptolémée : portrait allégorique de la Renaissance. L’Almageste est un traité d'astronomie rédigé en grec ancien par le savant alexandrin Claude Ptolémée au deuxième siècle de notre ère. Il constitue la somme des connaissances les plus avancées de l'Antiquité dans ce domaine, et est resté la référence principale en Orient comme en Occident jusqu'à la publication des œuvres de Copernic. Le traité s'appelait à l'origine Ἡ Μαθηματικὴ Σύνταξις (Hê Mathématikế Sýntaxis), La Composition Astronomique.