Trigonométrievignette|droite|Un triangle rectangle sur lequel est indiqué un angle Â, le côté adjacent à cet angle, le côté opposé à celui-ci, l'hypoténuse du triangle, et son angle droit. vignette|Cercle trigonométrique et angles remarquables vignette|droite|Planche sur la Trigonométrie, 1728 Cyclopaedia. La trigonométrie (du grec τρίγωνος / trígonos, « triangulaire », et μέτρον / métron, « mesure ») est une branche des mathématiques qui traite des relations entre distances et angles dans les triangles et des fonctions trigonométriques telles que sinus, cosinus, tangente.
Identité trigonométriqueUne identité trigonométrique est une relation impliquant des fonctions trigonométriques, vérifiée pour toutes les valeurs possibles des variables intervenant dans la relation. Ces identités peuvent servir à simplifier une expression comportant des fonctions trigonométriques ou à la transformer (par exemple pour en calculer une primitive). Elles constituent donc une « boîte à outils » utile pour la résolution de problèmes. Les fonctions trigonométriques sont définies géométriquement ou analytiquement.
Sine and cosineIn mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted simply as and .
Fonction transcendanteEn mathématiques, une fonction ou une série formelle est dite transcendante si elle n'est pas algébrique, c'est-à-dire si elle n'est pas solution d'une équation polynomiale à coefficients polynomiaux par rapport à ses arguments. Cette notion est donc, au même titre que celle de nombre transcendant, un cas particulier de celle d'élément transcendant d'une algèbre sur un anneau commutatif, l'algèbre et l'anneau considérés étant ici soit les fonctions de certaines variables (à valeurs dans un anneau commutatif R) et les fonctions polynomiales en ces variables (à coefficients dans R), soit les séries formelles et les polynômes (en une ou plusieurs indéterminées).
Sinus verseLe sinus verse est une fonction trigonométrique peu utilisée de nos jours. Elle est généralement notée versin, vers ou encore sin v. et définie comme : Le sinus verse est une fonction introduite par les Indiens (dans le Surya Siddhanta (c. 400) et dans l'Āryabhaṭīya () dérivée de la notion de flèche. Tout comme le sinus indien (jya) c'est une longueur associée à un arc d'un cercle de rayon donné. Appelée utkrama-jya, elle correspond dans un cercle à la flèche de l'arc double, tout comme jya correspond à la demi-corde de l'arc double, c'est-à-dire R sin(θ).