Entrelacs (théorie des nœuds)En théorie des nœuds, un entrelacs est un enchevêtrement de plusieurs nœuds. L'étude des entrelacs et des nœuds est liée, plusieurs invariants s'interprétant plus naturellement dans le cadre général des entrelacs, au moyen notamment des relations d'écheveau. Un entrelacs est la donnée d'un plongement injectif d'une ou plusieurs copies du cercle S dans R ou dans S, appelées ses composantes, ou ses boucles. Deux entrelacs sont considérés équivalents lorsqu'ils sont identiques à isotopie près.
Link groupIn knot theory, an area of mathematics, the link group of a link is an analog of the knot group of a knot. They were described by John Milnor in his Ph.D. thesis, . Notably, the link group is not in general the fundamental group of the link complement. The link group of an n-component link is essentially the set of (n + 1)-component links extending this link, up to link homotopy. In other words, each component of the extended link is allowed to move through regular homotopy (homotopy through immersions), knotting or unknotting itself, but is not allowed to move through other components.
Entrelacs brunnienEn mathématiques, plus précisément en théorie des nœuds, une sous-branche de la topologie, un entrelacs brunnien est un entrelacs non qui devient trivial si l'un quelconque de ses composants est enlevé. En d'autres termes, couper n'importe laquelle des boucles libère toutes les boucles de l'entrelacs. L'adjectif brunnien vient de Hermann Brunn, qui a rédigé l'article Über Verkettung en 1892 dans lequel il prend pour exemples de tels nœuds. L'entrelacs brunnien le plus simple et le plus connu est le nœud borroméen, un entrelacs de trois éléments non noués entre eux.
Anneaux borroméensEn mathématiques et plus précisément en théorie des nœuds, les anneaux borroméens constituent un entrelacs de trois cercles (au sens topologique) qui ne peuvent être détachés les uns des autres même en les déformant, mais tel que la suppression de n'importe quel cercle libère les deux cercles restants. Autrement dit, il s'agit d'un exemple d'entrelacs brunnien. La dénomination vient de l'utilisation qui en était faite dans les armoiries d'une famille italienne, les Borromeo.
Théorie des nœudsthumb|right|Représentation d’un nœud torique de type (3, 8). La théorie des nœuds est une branche de la topologie qui consiste en l'étude mathématique de courbes présentant des liaisons avec elles-mêmes, un « bout de ficelle » idéalisé en lacets. Elle est donc très proche de la théorie des tresses qui comporte plusieurs chemins ou « bouts de ficelle ». left|thumb|Nœuds triviaux La théorie des nœuds a commencé vers 1860 et avec des travaux de Carl Friedrich Gauss liés à l'électromagnétisme.