Résumé
In statistical quality control, the CUsUM (or cumulative sum control chart) is a sequential analysis technique developed by E. S. Page of the University of Cambridge. It is typically used for monitoring change detection. CUSUM was announced in Biometrika, in 1954, a few years after the publication of Wald's sequential probability ratio test (SPRT). E. S. Page referred to a "quality number" , by which he meant a parameter of the probability distribution; for example, the mean. He devised CUSUM as a method to determine changes in it, and proposed a criterion for deciding when to take corrective action. When the CUSUM method is applied to changes in mean, it can be used for step detection of a time series. A few years later, George Alfred Barnard developed a visualization method, the V-mask chart, to detect both increases and decreases in . As its name implies, CUSUM involves the calculation of a cumulative sum (which is what makes it "sequential"). Samples from a process are assigned weights , and summed as follows: When the value of S exceeds a certain threshold value, a change in value has been found. The above formula only detects changes in the positive direction. When negative changes need to be found as well, the min operation should be used instead of the max operation, and this time a change has been found when the value of S is below the (negative) value of the threshold value. Page did not explicitly say that represents the likelihood function, but this is common usage. Note that this differs from SPRT by always using zero function as the lower "holding barrier" rather than a lower "holding barrier". Also, CUSUM does not require the use of the likelihood function. As a means of assessing CUSUM's performance, Page defined the average run length (A.R.L.) metric; "the expected number of articles sampled before action is taken." He further wrote: When the quality of the output is satisfactory the A.R.L. is a measure of the expense incurred by the scheme when it gives false alarms, i.e., Type I errors (Neyman & Pearson, 1936).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (3)
Concepts associés (2)
Détection de ruptures
vignette|350px|droite|Exemple de signal ayant des changements dans la moyenne. vignette|350px|droite|Exemple de signal ayant des changements dans la distribution. En analyse statistique, le problème de détection de ruptures (ou détection de points de changement) est un problème de régression ayant pour but d'estimer les instants où un signal présente des changements dans la distribution. Ces instants sont matérialisés sur les deux figures par des lignes verticales bleues.
Analyse séquentielle
En statistique, l'analyse séquentielle, ou test d'hypothèse séquentiel, est une analyse statistique où la taille de l'échantillon n'est pas fixée à l'avance. Plutôt, les données sont évaluées au fur et à mesure qu'elles sont recueillies, et l'échantillonnage est arrêté selon une règle d'arrêt prédéfinie, dès que des résultats significatifs sont observés. Une conclusion peut ainsi parfois être atteinte à un stade beaucoup plus précoce que ce qui serait possible avec des tests d'hypothèse ou des estimations plus classiques, à un coût financier ou humain par conséquent inférieur.