Résumé
In statistics, a generalized linear mixed model (GLMM) is an extension to the generalized linear model (GLM) in which the linear predictor contains random effects in addition to the usual fixed effects. They also inherit from GLMs the idea of extending linear mixed models to non-normal data. GLMMs provide a broad range of models for the analysis of grouped data, since the differences between groups can be modelled as a random effect. These models are useful in the analysis of many kinds of data, including longitudinal data. GLMMs are generally defined such that, conditioned on the random effects , the dependent variable is distributed according to the exponential family with its expectation related to the linear predictor via a link function Here and are the fixed effects design matrix, and fixed effects respectively; and are the random effects design matrix and random effects respectively. To understand this very brief definition you will first need to understand the definition of a generalized linear model and of a mixed model. Generalized linear mixed models are a special cases of hierarchical generalized linear models in which the random effects are normally distributed. The complete likelihood has no general closed form, and integrating over the random effects is usually extremely computationally intensive. In addition to numerically approximating this integral(e.g. via Gauss–Hermite quadrature), methods motivated by Laplace approximation have been proposed. For example, the penalized quasi-likelihood method, which essentially involves repeatedly fitting (i.e. doubly iterative) a weighted normal mixed model with a working variate, is implemented by various commercial and open source statistical programs. Fitting GLMMs via maximum likelihood (as via AIC) involves integrating over the random effects. In general, those integrals cannot be expressed in analytical form. Various approximate methods have been developed, but none has good properties for all possible models and data sets (e.g.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (18)
MATH-341: Linear models
Regression modelling is a fundamental tool of statistics, because it describes how the law of a random variable of interest may depend on other variables. This course aims to familiarize students with
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
MATH-408: Regression methods
General graduate course on regression methods
Afficher plus
Publications associées (128)