Couvre les mesures d'information telles que l'entropie, la divergence Kullback-Leibler et l'inégalité de traitement des données, ainsi que les noyaux de probabilité et les informations mutuelles.
Plonge dans l’entropie des données neuroscientifiques et de l’écologie, explorant la représentation de l’information sensorielle et la diversité des populations biologiques.
Explore le concept d'entropie exprimée en bits et sa relation avec les distributions de probabilité, en se concentrant sur le gain et la perte d'informations dans divers scénarios.