Couvre les modules injectables, les modules Ox-modules, et leur pertinence dans les structures algébriques, soulignant leur importance dans la résolution des résolutions acycliques et l'informatique de la cohomologie.
Explore les compositions d'applications et les conditions d'injectivité en algèbre linéaire, y compris la restriction des applications et la preuve combinatoire des injections.
Explore la construction et les propriétés des morphismes, en mettant l'accent sur les diviseurs efficaces, l'isomorphisme des semi-groupes, et la relation entre les gerbes et les espaces factoriels.