In geometry, Brianchon's theorem is a theorem stating that when a hexagon is circumscribed around a conic section, its principal diagonals (those connecting opposite vertices) meet in a single point. It is named after Charles Julien Brianchon (1783–1864).
Let be a hexagon formed by six tangent lines of a conic section. Then lines (extended diagonals each connecting opposite vertices) intersect at a single point , the Brianchon point.
The polar reciprocal and projective dual of this theorem give Pascal's theorem.
As for Pascal's theorem there exist degenerations for Brianchon's theorem, too: Let coincide two neighbored tangents. Their point of intersection becomes a point of the conic. In the diagram three pairs of neighbored tangents coincide. This procedure results in a statement on inellipses of triangles. From a projective point of view the two triangles and lie perspectively with center . That means there exists a central collineation, which maps the one onto the other triangle. But only in special cases this collineation is an affine scaling. For example for a Steiner inellipse, where the Brianchon point is the centroid.
Brianchon's theorem is true in both the affine plane and the real projective plane. However, its statement in the affine plane is in a sense less informative and more complicated than that in the projective plane. Consider, for example, five tangent lines to a parabola. These may be considered sides of a hexagon whose sixth side is the line at infinity, but there is no line at infinity in the affine plane. In two instances, a line from a (non-existent) vertex to the opposite vertex would be a line parallel to one of the five tangent lines. Brianchon's theorem stated only for the affine plane would therefore have to be stated differently in such a situation.
The projective dual of Brianchon's theorem has exceptions in the affine plane but not in the projective plane.
Brianchon's theorem can be proved by the idea of radical axis or reciprocation.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
En géométrie euclidienne, une conique est une courbe plane algébrique, définie initialement comme l’intersection d'un cône de révolution (supposé prolongé à l’infini de part et d’autre du sommet) avec un plan. Lorsque le plan de coupe ne passe pas par le sommet du cône, la conique est dite non dégénérée et réalise l’une des trois formes de courbe suivantes : ellipse, parabole ou hyperbole (le cercle étant un cas particulier de l'ellipse, parfois appelé quatrième forme). Ces courbes sont caractérisées par un paramètre réel appelé excentricité.
La géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
La dualité projective, découverte par Jean-Victor Poncelet, est une généralisation de l'analogie entre le fait que par deux points distincts passe une droite et une seule, et le fait que deux droites distinctes se coupent en un point et un seul (à condition de se placer en géométrie projective, de sorte que deux droites parallèles se rencontrent en un point à l'infini).
Explore l'organisation supramoléculaire à l'état solide, couvrant les formes des molécules pi-conjugées, les structures cristallines et les interactions intermoléculaires.