Concept

Réseau (sous-groupe discret)

En théorie des groupes le terme réseau désigne un sous-groupe d'un groupe topologique localement compact vérifiant les conditions suivantes : est discret dans , ce qui est équivalent à la condition qu'il existe un voisinage ouvert de l'identité de tel que ; est de covolume fini dans , c'est-à-dire qu'il existe sur l'espace quotient une mesure Borélienne de masse totale finie et invariante par (agissant par translations à droite). Un réseau est dit uniforme quand le quotient est compact. On dit alors que est un réseau de . L'exemple le plus simple (et l'origine de la terminologie) est celui des groupes abéliens : le sous-groupe est un réseau uniforme (voir aussi : Réseau (géométrie)). Le cadre classique pour étudier cette notion est celui des groupes de Lie : la notion de réseau a été originellement développée pour extraire les propriétés essentielles des groupes arithmétiques. Tous les groupes topologiques ne possèdent pas de réseau. Il est facile de vérifier qu'un groupe localement compact contenant un réseau est nécessairement unimodulaire, ce qui n'est pas vrai de tous les groupes : un exemple simple de groupe non-unimodulaire est le groupe des matrices triangulaires supérieures. Il est plus difficile de construire des groupes unimodulaires ne contenant pas de réseau : des exemples sont donnés par certains groupes nilpotents de matrices. Enfin, il existe même des groupes topologiques simples (ce qui implique immédiatement qu'ils sont unimodulaires) ne contenant pas de réseau. Un théorème d'Armand Borel affirme que tout groupe de Lie semi-simple contient des réseaux uniformes et non-uniformes. La construction repose sur les groupes arithmétiques, qui sont construits de la manière suivante. Tout groupe de Lie réel peut s'écrire comme l'ensemble des points réels d'un groupe algébrique défini sur . L'idée de la construction est que le sous-groupe est un réseau dans . La définition exacte plus technique : Un théorème difficile dû à Borel et Harish-Chandra affirme que si est semisimple alors un tel sous-groupe est toujours un réseau.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.