Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la classification linéaire, l'extraction des caractéristiques, les fonctions de perte, la validation croisée et les échelles spatiales dans le traitement des signaux et l'analyse de l'IRMf.
Couvre l'utilisation de machines vectorielles de support pour la classification multi-classes et l'importance des vecteurs de support dans les limites de classification de serrage.
Explique la machine vectorielle de soutien et la régression logistique pour les tâches de classification, en mettant l'accent sur la maximisation de la marge et la minimisation des risques.
Explore les applications d'apprentissage automatique dans la modélisation des matériaux, couvrant la régression, la classification et la sélection des fonctionnalités.
Couvre l'inférence statistique, l'apprentissage automatique, les SVM pour la classification des pourriels, le prétraitement des courriels et l'extraction des fonctionnalités.
Introduit le classificateur Naive Bayes, qui couvre les hypothèses d'indépendance, les probabilités conditionnelles et les applications dans la classification des documents et le diagnostic médical.