John von Neumann (János Lajos Neumann) (, János Lajos Neumann en hongrois), né le à Budapest et mort le à Washington, est un mathématicien et physicien américano-hongrois. Il a apporté d'importantes contributions en mécanique quantique, en analyse fonctionnelle, en logique mathématique, en informatique théorique, en sciences économiques et dans beaucoup d'autres domaines des mathématiques et de la physique. Il a de plus participé aux programmes militaires américains.
Aîné d'une fratrie de trois, János Neumann naît à Budapest dans une famille d'origine juive, de Margit Kann et de Miksa Neumann, un avocat originaire de Pest qui deviendra le conseiller juridique principal puis le directeur de la Banque de crédit et d'hypothèque hongroise. Miksa Neumann est anobli le et intégré à la noblesse hongroise avec le prédicat de Marghita (marghitai Neumann en hongrois ; Neumann von Marghita en allemand). Les enfants Neumann grandissent dans une famille qui côtoie et reçoit chez elle l'élite intellectuelle hongroise et où l'on discute autant sciences, musique et théâtre que littérature. János et ses deux jeunes frères, Mihály (1907°) et Miklós (1911°), apprennent ainsi, en plus du hongrois, l'allemand et le français dès leur plus jeune âge. Intellectuels liés au mouvement des Lumières juif (la Haskala), le jeune Neumann ne prête guère attention à ses origines juives, sinon pour son répertoire de blagues.
János est un enfant prodige : à six ans, il converse avec son père en grec ancien et peut mentalement faire la division d'un nombre à huit chiffres. Une anecdote rapporte qu'à huit ans, il a déjà lu les quarante-quatre volumes de l'histoire universelle de la bibliothèque familiale et qu'il les a entièrement mémorisés : Il aurait été capable de citer de mémoire des pages entières de livres lus des années auparavant. Il entre au lycée luthérien de Budapest (Budapesti Evangélikus Gimnázium) qui était germanophone en 1911.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
We will give an overview of the field of Artificial Life (Alife). We study questions such as emergence of complexity, self-reproduction, evolution, both through concrete models and through mathematica
Information is processed in physical devices. In the quantum regime the concept of classical bit is replaced by the quantum bit. We introduce quantum principles, and then quantum communications, key d
En mathématiques, et plus précisément en topologie algébrique, le théorème du point fixe de Brouwer fait partie de la grande famille des théorèmes de point fixe, qui énoncent que si une fonction continue f vérifie certaines propriétés, alors il existe un point x0 tel que f(x0) = x0. La forme la plus simple du théorème de Brouwer prend comme hypothèse que la fonction f est définie sur un intervalle fermé borné non vide I et à valeurs dans I. Sous une forme plus générale, la fonction est définie sur un convexe compact K d'un espace euclidien et à valeurs dans K.
Un ordinateur est un système de traitement de l'information programmable tel que défini par Alan Turing et qui fonctionne par la lecture séquentielle d'un ensemble d'instructions, organisées en programmes, qui lui font exécuter des opérations logiques et arithmétiques. Sa structure physique actuelle fait que toutes les opérations reposent sur la logique binaire et sur des nombres formés à partir de chiffres binaires.
Eugene Paul Wigner (en hongrois Wigner Jenő Pál, prononcé ; – ) est un physicien théoricien hongrois naturalisé américain. En 1963, Wigner, Maria Goeppert-Mayer et Hans Daniel Jensen partagèrent le prix Nobel de physique pour leur travail sur l'explication de la structure du noyau atomique et son développement de la théorie de mécanique quantique concernant la nature du proton et du neutron. vignette|gauche|Werner Heisenberg et Eugene Wigner en 1928.
Molecular quantum dynamics simulations are essential for understanding many fundamental phenomena in physics and chemistry. They often require solving the time-dependent Schrödinger equation for molecular nuclei, which is challenging even for medium-sized ...
Driven by the demand for real-time processing and the need to minimize latency in AI algorithms, edge computing has experienced remarkable progress. Decision-making AI applications stand out for their heavy reliance on data-centric operations, predominantl ...