Kurt GödelKurt Gödel, né le à Brünn et mort le à Princeton (New Jersey), est un logicien et mathématicien autrichien naturalisé américain. Son résultat le plus connu, le théorème d'incomplétude de Gödel, affirme que n'importe quel système logique suffisamment puissant pour décrire l'arithmétique des entiers admet des propositions sur les nombres entiers ne pouvant être ni infirmées ni confirmées à partir des axiomes de la théorie. Ces propositions sont qualifiées d'indécidables.
Hermann WeylHermann Weyl (), né le à Elmshorn et mort le à Zurich, est un mathématicien et physicien théoricien allemand du . Il fut le premier, dès 1918, à combiner la relativité générale avec l'électromagnétisme en développant la géométrie de Weyl (ou géométrie conforme) et en introduisant la notion de jauge. L'invariance de jauge est à la base du modèle standard et reste un ingrédient fondamental pour la physique théorique moderne. Ses recherches en mathématiques portèrent essentiellement sur la topologie, la géométrie et l'algèbre.
Matrice densitéEn physique quantique, la matrice densité, souvent représentée par , est un objet mathématique introduit par le mathématicien et physicien John von Neumann permettant de décrire l'état d'un système physique. Elle constitue une généralisation de la formulation d'un état physique à l'aide d'un ket , en permettant de décrire des états plus généraux, appelés mélanges statistiques, que la précédente formulation ne permettait pas de décrire.
Théorie naïve des ensemblesLes ensembles sont d'une importance fondamentale en mathématiques ; en fait, de manière formelle, la mécanique interne des mathématiques (nombres, relations, fonctions, etc.) peut se définir en termes d'ensembles. Il y a plusieurs façons de développer la théorie des ensembles et plusieurs théories des ensembles existent. Par théorie naïve des ensembles, on entend le plus souvent un développement informel d'une théorie des ensembles dans le langage usuel des mathématiques, mais fondée sur les axiomes de la théorie des ensembles de Zermelo ou de Zermelo-Fraenkel avec axiome du choix dans le style du livre Naive Set Theory de Paul Halmos.
Information quantiqueLa théorie de l'information quantique, parfois abrégée simplement en information quantique, est un développement de la théorie de l'information de Claude Shannon exploitant les propriétés de la mécanique quantique, notamment le principe de superposition ou encore l'intrication. L'unité qui est utilisée pour quantifier l'information quantique est le qubit, par analogie avec le bit d'information classique.
ENIACLENIAC (acronyme de l'expression anglaise Electronic Numerical Integrator And Computer) est en 1945 le premier ordinateur entièrement électronique pouvant être Turing-complet. Il peut être reprogrammé pour résoudre, en principe, tous les problèmes calculatoires. Sous l’influence de John von Neumann, l’ENIAC est à partir de 1947 reconverti en ordinateur à programme enregistré, quoique de façon quelque peu plus primitive que les ordinateurs qui lui succéderont.
Born ruleThe Born rule (also called Born's rule) is a postulate of quantum mechanics which gives the probability that a measurement of a quantum system will yield a given result. In its simplest form, it states that the probability density of finding a system in a given state, when measured, is proportional to the square of the amplitude of the system's wavefunction at that state. It was formulated by German physicist Max Born in 1926.
Logique quantiqueLa logique quantique est la base de raisonnements et conclusions en accord avec les postulats de la mécanique quantique. En particulier, les observables n'étant pas forcément commutatives, le théorème d'Heisenberg (cf. le principe d'incertitude), entraîne la notion d'intricats, notion purement quantique comme l'illustre celle de chat mort & vivant du célèbre paradoxe du chat de Schrödinger. John von Neumann a montré, en réfléchissant aux fondations de la mécanique quantique, que la logique d'Aristote (cf.
Quantum statistical mechanicsQuantum statistical mechanics is statistical mechanics applied to quantum mechanical systems. In quantum mechanics a statistical ensemble (probability distribution over possible quantum states) is described by a density operator S, which is a non-negative, self-adjoint, trace-class operator of trace 1 on the Hilbert space H describing the quantum system. This can be shown under various mathematical formalisms for quantum mechanics. One such formalism is provided by quantum logic.
David HilbertDavid Hilbert, né en 1862 à Königsberg et mort en 1943 à Göttingen, est un mathématicien allemand. Il est souvent considéré comme un des plus grands mathématiciens du . Il a créé ou développé un large éventail d'idées fondamentales, que ce soit la théorie des invariants, l'axiomatisation de la géométrie ou les fondements de l'analyse fonctionnelle (avec les espaces de Hilbert). L'un des exemples les mieux connus de sa position de chef de file est sa présentation, en 1900, de ses fameux problèmes qui ont durablement influencé les recherches mathématiques du .