Hermann Weyl (), né le à Elmshorn et mort le à Zurich, est un mathématicien et physicien théoricien allemand du . Il fut le premier, dès 1918, à combiner la relativité générale avec l'électromagnétisme en développant la géométrie de Weyl (ou géométrie conforme) et en introduisant la notion de jauge. L'invariance de jauge est à la base du modèle standard et reste un ingrédient fondamental pour la physique théorique moderne. Ses recherches en mathématiques portèrent essentiellement sur la topologie, la géométrie et l'algèbre. Weyl publia également de nombreux travaux sur l'espace, le temps, la matière, la mécanique quantique, la philosophie, la logique, la théorie des nombres et l'histoire des mathématiques. Hermann Klaus Hugo Weyl naît à Elmshorn, à proximité de Hambourg en Allemagne, au sein d'une famille de confession luthérienne dont les membres parlent entre eux le bas allemand, qu'Hermann affectionnait tout particulièrement. Son père dirige une petite banque, de son enfance et de sa jeunesse on connaît peu de choses. Entre 1891 et 1894, il va à l'école Bismarck, à Elmshorn, entre Pâques 1895 et Pâques 1904. Il complète ses études pré-universitaires au collège Christianeum de la ville voisine d'Altona. À l'adolescence, faisant preuve d'intérêt et d'aptitude pour les sciences, Weyl s'emploie aussi à lire et à comprendre par ses propres moyens la Critique de la raison pure (1781) d'Emmanuel Kant, ouvrage dont une thèse l'impressionne énormément : l'espace et le temps sont des aptitudes à capter l'intuition des objets matériels, plus que des moyens objectifs dans lesquels (espace) et durant lesquels (temps) ces objets ont leurs coordonnées. En 1904, à l'arrivée de Weyl à l'université de Göttingen, l'atmosphère ne peut pas y être plus stimulante. Non seulement David Hilbert y exerce son génie, mais Felix Klein et Hermann Minkowski y rayonnent à ses côtés. Grâce à ces trois personnalités et à de nouvelles recrues, comme Carl Runge en 1904, Göttingen est en train de ravir à Berlin le leadership des mathématiques allemandes.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
PHYS-739: Conformal Field theory and Gravity
This course is an introduction to holography, the modern approach to quantum gravity.
COM-406: Foundations of Data Science
We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
MATH-495: Mathematical quantum mechanics
Quantum mechanics is one of the most successful physical theories. This course presents the mathematical formalism (functional analysis and spectral theory) that underlies quantum mechanics. It is sim
Publications associées (38)
Concepts associés (26)
Luitzen Egbertus Jan Brouwer
Luitzen Egbertus Jan Brouwer (né le à Overschie et mort le à Blaricum) est un mathématicien néerlandais. Aîné de trois enfants, ce fils du maître d'école Egbertus Luitzens Brouwer et de Henderika Poutsma, témoigne dès son plus jeune âge d'une intelligence exceptionnelle. À 16 ans seulement, le jeune prodige s'inscrit à l'université d'Amsterdam pour y étudier les mathématiques, sans pour autant négliger ses lectures de chevet, celles des philosophes Emmanuel Kant et Arthur Schopenhauer.
Espace de Hilbert
vignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Variété (géométrie)
En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.