En mathématiques, la catégorification est le processus qui consiste à remplacer des théorèmes de la théorie des ensembles par des analogues de la théorie des catégories. La catégorification, lorsqu'elle est effectuée avec succès, remplace les ensembles par des catégories, les fonctions par des foncteurs et les équations par des isomorphismes naturels de foncteurs qui possèdent des propriétés supplémentaires. Il faut noter que le but est d'étudier l'objet qui a été « catégorifié » grâce aux structures supplémentaires et aux méthodes abstraites auxquelles on accède par cette construction. Le terme a été inventé par .
Le processus inverse de la catégorification est le processus de décatégorification. La décatégorification est un processus systématique par lequel les objets isomorphes d'une catégorie sont identifiés. Alors que la décatégorification est un processus simple, la catégorification est généralement beaucoup plus difficile. Dans la théorie des représentations des algèbres de Lie, les principaux objets d'études sont des modules sur des algèbres particulières et il existe plusieurs cadres pour ce que devrait être une catégorification d'un tel module, par exemple les catégorifications dites abéliennes (faibles).
La catégorification et la décatégorification ne sont pas des procédures mathématiques précises mais plutôt un ensemble de méthodes pour construire des analogues. Ils sont utilisés de la même manière que des mots comme « généralisation », et non comme « faisceautisation ».
Une forme de catégorification consiste à prendre une structure décrite en termes d'ensembles et à interpréter les ensembles comme des classes d'isomorphisme d'objets dans une catégorie.
Par exemple, l'ensemble des nombres naturels peut être vu comme l'ensemble des cardinaux des ensembles finis (deux ensembles quelconques ayant le même cardinal sont isomorphes, c'est-à-dire en bijection l'un avec l'autre). Les opérations sur l'ensemble des nombres naturels, telles que l'addition et la multiplication, peuvent alors être considérées comme les « traces » du coproduit (réunion disjointe) et du produit (produit cartésien) dans la .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course will explain the theory of vanishing cycles and perverse sheaves. We will see how the Hard Lefschetz theorem can be proved using perverse sheaves. If we have more time we will try to see t
En mathématiques, et plus particulièrement en théorie des catégories et en topologie algébrique, la notion de groupoïde généralise à la fois les notions de groupe, de relation d'équivalence sur un ensemble, et de l'action d'un groupe sur un ensemble. Elle a été initialement développée par Heinrich Brandt en 1927. Les groupoïdes sont souvent utilisés pour représenter certaines informations sur des objets topologiques ou géométriques comme les variétés. Un groupoïde est une petite catégorie dans laquelle tout morphisme est un isomorphisme.
L'homologie de Floer est une adaptation de l'homologie de Morse en dimension infinie. L'homologie de Floer symplectique (HFS) est une théorie homologique pour une variété symplectique munie d'un symplectomorphisme non-dégénéré. Si le symplectomorphisme est hamiltonien, l'homologie provient de l'étude de la fonctionnelle d'action symplectique sur le revêtement universel de l'espace des lacets de la variété symplectique. L'homologie de Floer symplectique est invariante par isotopie hamiltonienne du symplectomorphisme.
Given a hyperelliptic hyperbolic surface S of genus g >= 2, we find bounds on the lengths of homologically independent loops on S. As a consequence, we show that for any lambda is an element of (0, 1) there exists a constant N(lambda) such that every such ...