Jeu bayésienEn théorie des jeux, un jeu bayésien est un jeu dans lequel l'information dont dispose chaque joueur sur les caractéristiques des autres joueurs est incomplète. En particulier, on représente ainsi un jeu dans lequel un ou plusieurs joueurs font face à une incertitude quant au gain des autres joueurs. Cette situation impose de spécifier pour chaque joueur des croyances concernant les caractéristiques des autres joueurs. Du fait de l'hypothèse de rationalité, ces croyances prennent la forme d'une distribution de probabilités sur toutes les caractéristiques possibles.
Signaling gameIn game theory, a signaling game is a simple type of a dynamic Bayesian game. The essence of a signalling game is that one player takes an action, the signal, to convey information to another player, where sending the signal is more costly if they are conveying false information. A manufacturer, for example, might provide a warranty for its product in order to signal to consumers that its product is unlikely to break down. The classic example is of a worker who acquires a college degree not because it increases their skill, but because it conveys their ability to employers.
Perfect informationIn economics, perfect information (sometimes referred to as "no hidden information") is a feature of perfect competition. With perfect information in a market, all consumers and producers have complete and instantaneous knowledge of all market prices, their own utility, and own cost functions. In game theory, a sequential game has perfect information if each player, when making any decision, is perfectly informed of all the events that have previously occurred, including the "initialization event" of the game (e.
Extensive-form gameIn game theory, an extensive-form game is a specification of a game allowing (as the name suggests) for the explicit representation of a number of key aspects, like the sequencing of players' possible moves, their choices at every decision point, the (possibly imperfect) information each player has about the other player's moves when they make a decision, and their payoffs for all possible game outcomes. Extensive-form games also allow for the representation of incomplete information in the form of chance events modeled as "moves by nature".
Équilibre de Nashvignette|Le dilemme du prisonnier : chacun des deux joueurs dispose de deux stratégies : D pour dénoncer, C pour ne pas dénoncer. La matrice présente le gain des joueurs. Si les deux joueurs choisissent D (se dénoncent), aucun ne regrette son choix, car s'il avait choisi C, alors que l'autre a opté pour D, sa « tristesse » aurait augmenté. C'est un équilibre de Nash — il y a « non-regret » de son choix par chacun, au vu du choix de l'autre.
Échecsvignette|Anand - Kramnik, championnat du monde en 2008. vignette|Une partie simultanée donnée par le GM ukrainien Andrij Maksimenko à Toruń, Pologne. vignette|Enluminure, Liber de Moribus, vers 1300. vignette|Joueurs sur un échiquier géant à Lugano, Suisse. alt=Propriété exclusive de Thelma Ackermann. |vignette|Famille de la noblesse française jouant aux échecs dans les années 1860, carte de visite.
Théorie des jeuxLa théorie des jeux est un domaine des mathématiques qui propose une description formelle d'interactions stratégiques entre agents (appelés « joueurs »). Les fondements mathématiques de la théorie moderne des jeux sont décrits autour des années 1920 par Ernst Zermelo dans l'article , et par Émile Borel dans l'article . Ces idées sont ensuite développées par Oskar Morgenstern et John von Neumann en 1944 dans leur ouvrage qui est considéré comme le fondement de la théorie des jeux moderne.