Tangential triangleIn geometry, the tangential triangle of a reference triangle (other than a right triangle) is the triangle whose sides are on the tangent lines to the reference triangle's circumcircle at the reference triangle's vertices. Thus the incircle of the tangential triangle coincides with the circumcircle of the reference triangle. The circumcenter of the tangential triangle is on the reference triangle's Euler line, as is the center of similitude of the tangential triangle and the orthic triangle (whose vertices are at the feet of the altitudes of the reference triangle).
HypoténuseDans un triangle rectangle, le côté opposé à l'angle droit est appelé hypoténuse. Le théorème de Pythagore, parfois appelé théorème de l'hypoténuse, affirme que dans un triangle rectangle, la longueur de l'hypoténuse égale la racine carrée de la somme des carrés des longueurs des deux autres côtés, appelée parfois somme pythagoricienne de ces deux longueurs. L'hypoténuse d'un triangle rectangle est un diamètre du cercle circonscrit à celui-ci (voir angle inscrit dans un demi-cercle).
Conjugué isogonalEn géométrie, le conjugué isogonal d'un point dans un triangle est le point où concourent les droites symétriques, par rapport aux bissectrices, des droites passant par chaque sommet et ce point. vignette Antiparallèle (mathématiques) Deux couples de droites (d, d) et (Δ, Δ') sont antiparallèles si les bissectrices des angles qu'ils forment ont même direction. Les angles de droites (d, Δ) et (Δ', d) sont égaux (modulo π). On dit que d''' est antiparallèle à d par rapport à (Δ, Δ').
Lemoine pointIn geometry, the Lemoine point, Grebe point or symmedian point is the intersection of the three symmedians (medians reflected at the associated angle bisectors) of a triangle. Ross Honsberger called its existence "one of the crown jewels of modern geometry". In the Encyclopedia of Triangle Centers the symmedian point appears as the sixth point, X(6). For a non-equilateral triangle, it lies in the open orthocentroidal disk punctured at its own center, and could be any point therein.
Homothetic centerIn geometry, a homothetic center (also called a center of similarity or a center of similitude) is a point from which at least two geometrically similar figures can be seen as a dilation or contraction of one another. If the center is external, the two figures are directly similar to one another; their angles have the same rotational sense. If the center is internal, the two figures are scaled mirror images of one another; their angles have the opposite sense.
Base (géométrie)En géométrie plane, la base désigne : le côté inférieur (supposé horizontal) d’une figure plane (par exemple un triangle, un parallélogramme ou un trapèze). Sa longueur sert à calculer l’aire de cette figure. En géométrie dans l'espace, la base est la face inférieure (supposée horizontale) d’un solide tels qu'un cône ou une pyramide ; les deux bases sont les deux faces opposées d'un solide tels qu'un cylindre ou un prisme. L'aire des bases sert à calculer le volume du solide.
CathèteIn a right triangle, a cathetus (originally from the Greek word Κάθετος; plural: catheti), commonly known as a leg, is either of the sides that are adjacent to the right angle. It is occasionally called a "side about the right angle". The side opposite the right angle is the hypotenuse. In the context of the hypotenuse, the catheti are sometimes referred to simply as "the other two sides". If the catheti of a right triangle have equal lengths, the triangle is isosceles.
Polar circle (geometry)In geometry, the polar circle of a triangle is the circle whose center is the triangle's orthocenter and whose squared radius is where A, B, C denote both the triangle's vertices and the angle measures at those vertices, H is the orthocenter (the intersection of the triangle's altitudes), D, E, F are the feet of the altitudes from vertices A, B, C respectively, R is the triangle's circumradius (the radius of its circumscribed circle), and a, b, c are the lengths of the triangle's sides opposite vertices A,
Diagramme ternairevignette|Diagramme d'inflammabilité du méthane. Zone en orange : compositions inflammables. Ligne en bleu : mélanges méthane-air. Ligne en rouge : oxygène et méthane dans les proportions stœchiométriques de la combustion. Ligne en brun : 12 % d'oxygène. vignette|Couleur des alliages Ag–Au–Cu, en fonction de leur composition. Un diagramme ternaire est la représentation graphique de triplets de données numériques par les points d'un triangle. Chaque triplet (a, b, c) constitue les coordonnées barycentriques du point correspondant.
Orthocentroidal circleIn geometry, the orthocentroidal circle of a non-equilateral triangle is the circle that has the triangle's orthocenter and centroid at opposite ends of its diameter. This diameter also contains the triangle's nine-point center and is a subset of the Euler line, which also contains the circumcenter outside the orthocentroidal circle. Andrew Guinand showed in 1984 that the triangle's incenter must lie in the interior of the orthocentroidal circle, but not coinciding with the nine-point center; that is, it must fall in the open orthocentroidal disk punctured at the nine-point center.