Centre du cercle d'EulerEn géométrie, le centre du cercle d'Euler, ou centre des neuf points est un centre du triangle, un point d'un triangle plat qui ne dépend que de l'existence du triangle. Son nom vient du fait qu'il s'agit du centre du cercle d'Euler ou cercle des neuf points, qui passe par neuf points caractéristiques du triangle : les milieux des trois côtés, les pieds des trois hauteurs et les points milieux entre les sommets et l'orthocentre. Le centre du cercle d'Euler est référencé par X(5) dans l'Encyclopedia of Triangle Centers de Clark Kimberling.
Droite d'Eulervignette|Droite d'Euler en rouge, médianes en orange, médiatrices en vert, et hauteurs en bleu. Le point rouge est le centre du cercle d'Euler. En géométrie euclidienne, dans un triangle non équilatéral, la droite d'Euler est une droite passant par plusieurs points remarquables du triangle, dont l'orthocentre, le centre de gravité (ou isobarycentre) et le centre du cercle circonscrit. Cette notion s'étend au quadrilatère et au tétraèdre.
IncenterIn geometry, the incenter of a triangle is a triangle center, a point defined for any triangle in a way that is independent of the triangle's placement or scale. The incenter may be equivalently defined as the point where the internal angle bisectors of the triangle cross, as the point equidistant from the triangle's sides, as the junction point of the medial axis and innermost point of the grassfire transform of the triangle, and as the center point of the inscribed circle of the triangle.
Cercle circonscritEn géométrie, un cercle circonscrit à un polygone est un cercle qui passe par tous les sommets du polygone. Le polygone est alors dit inscrit dans le cercle : on parle de polygone inscriptible ou parfois de polygone cyclique. Les sommets sont alors cocycliques, c'est-à-dire situés sur un même cercle. Si le polygone n'est pas aplati, ce cercle est unique et son centre est le point de concours des médiatrices des côtés. Un polygone n'a pas nécessairement de cercle circonscrit, mais les triangles, les rectangles et les polygones réguliers sont tous inscriptibles.
CentroïdeEn mathématiques, le centre de masse ou centroïde d’un domaine du plan ou de l’espace est un point d’équilibre pour une certaine mesure sur ce domaine. Il correspond au centre pour un cercle ou une sphère, et plus généralement correspond au centre de symétrie lorsque le domaine en possède un. Mais son existence et son unicité sont garanties dès que le domaine est de mesure finie. En géométrie, cette notion est synonyme de barycentre (pour un ensemble fini de points affectés de masses ponctuelles, le centre de masse est le barycentre des points pondérés).
Cercle d'EulerEn géométrie, le cercle d'Euler d'un triangle (aussi appelé cercle des neuf points, cercle de Feuerbach, cercle de Terquem, cercle médian) est l'unique cercle passant par les neuf points remarquables suivants : Les trois milieux des trois côtés du triangle ; Le pied de chacune des trois hauteurs du triangle ; Le milieu de chacun des trois segments reliant l'orthocentre H à un sommet du triangle. Dans son mémoire E325 présenté en 1763, Euler a considéré séparément les deux cercles circonscrits aux triangles et sans noter leur coïncidence .