Théorème flot-max/coupe-minLe théorème flot-max/coupe-min (ou max flow/min cut en anglais) est un théorème important en optimisation et en théorie des graphes. Il stipule qu'étant donné un graphe de flots, le flot maximum pouvant aller de la source au puits est égal à la capacité minimale devant être retirée du graphe afin d'empêcher qu'aucun flot ne puisse passer de la source au puits. Ce théorème est un cas particulier du théorème de dualité en optimisation linéaire et généralise le théorème de Kőnig, le théorème de Hall (dans les graphes bipartis) et le théorème de Menger (dans les graphes quelconques).
Graphe completEn théorie des graphes, un graphe complet est un graphe simple dont tous les sommets sont adjacents deux à deux, c'est-à-dire que tout couple de sommets disjoints est relié par une arête. Si le graphe est orienté, on dit qu'il est complet si chaque paire de sommets est reliée par exactement deux arcs (un dans chaque sens). Un graphe complet est un graphe dont tous les sommets sont adjacents. À isomorphisme près, il n'existe qu'un seul graphe complet non orienté d'ordre n, que l'on note .
Distance (théorie des graphes)En théorie des graphes, la distance entre deux nœuds d'un graphe est la longueur d'un plus court chemin entre ces deux nœuds. La longueur d'un chemin est sa longueur en nombre d'arêtes. Pour un graphe pondéré c'est la somme des poids des arêtes empruntées. Pour les graphes non orientés, c'est une distance au sens mathématique, tandis que pour les graphes orientés elle ne vérifie pas la propriété de symétrie. Cette notion permet entre autres de définir le diamètre et le rayon d'un graphe. Catégorie:Concept
Graph enumerationIn combinatorics, an area of mathematics, graph enumeration describes a class of combinatorial enumeration problems in which one must count undirected or directed graphs of certain types, typically as a function of the number of vertices of the graph. These problems may be solved either exactly (as an algebraic enumeration problem) or asymptotically. The pioneers in this area of mathematics were George Pólya, Arthur Cayley and J. Howard Redfield.
Théorie des graphesvignette|Un tracé de graphe. La théorie des graphes est la discipline mathématique et informatique qui étudie les graphes, lesquels sont des modèles abstraits de dessins de réseaux reliant des objets. Ces modèles sont constitués par la donnée de sommets (aussi appelés nœuds ou points, en référence aux polyèdres), et d'arêtes (aussi appelées liens ou lignes) entre ces sommets ; ces arêtes sont parfois non symétriques (les graphes sont alors dits orientés) et sont alors appelées des flèches ou des arcs.
L (complexité)En informatique théorique, et notamment dans la théorie de la complexité, la classe L est la classe des problèmes de décision décidés par une machine de Turing déterministe qui utilise un espace de taille logarithmique en fonction de la taille de l'entrée. Pour être plus précis, l'exigence sur l'espace de taille logarithmique se réfère à l'espace supplémentaire utilisable. Elle est aussi parfois notée LOGSPACE.
Algorithme de KruskalEn informatique, l'algorithme de Kruskal est un algorithme de recherche d'arbre recouvrant de poids minimum (ARPM) ou arbre couvrant minimum (ACM) dans un graphe connexe non-orienté et pondéré. Il a été conçu en 1956 par Joseph Kruskal. On considère un graphe connexe non-orienté et pondéré : chaque arête possède un poids qui est un nombre qui représente le coût de cette arête. Dans un tel graphe, un arbre couvrant est un sous-graphe connexe sans cycle qui contient tous les sommets du graphe.
Component (graph theory)In graph theory, a component of an undirected graph is a connected subgraph that is not part of any larger connected subgraph. The components of any graph partition its vertices into disjoint sets, and are the induced subgraphs of those sets. A graph that is itself connected has exactly one component, consisting of the whole graph. Components are sometimes called connected components. The number of components in a given graph is an important graph invariant, and is closely related to invariants of matroids, topological spaces, and matrices.
Circle packing theoremThe circle packing theorem (also known as the Koebe–Andreev–Thurston theorem) describes the possible tangency relations between circles in the plane whose interiors are disjoint. A circle packing is a connected collection of circles (in general, on any Riemann surface) whose interiors are disjoint. The intersection graph of a circle packing is the graph having a vertex for each circle, and an edge for every pair of circles that are tangent.
Disjoint union of graphsIn graph theory, a branch of mathematics, the disjoint union of graphs is an operation that combines two or more graphs to form a larger graph. It is analogous to the disjoint union of sets, and is constructed by making the vertex set of the result be the disjoint union of the vertex sets of the given graphs, and by making the edge set of the result be the disjoint union of the edge sets of the given graphs. Any disjoint union of two or more nonempty graphs is necessarily disconnected.