Cours associés (31)
CS-250: Algorithms I
The students learn the theory and practice of basic concepts and techniques in algorithms. The course covers mathematical induction, techniques for analyzing algorithms, elementary data structures, ma
COM-512: Networks out of control
The goal of this class is to acquire mathematical tools and engineering insight about networks whose structure is random, as well as learning and control techniques applicable to such network data.
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
MATH-448: Statistical analysis of network data
A first course in statistical network analysis and applications.
MATH-602: Inference on graphs
The class covers topics related to statistical inference and algorithms on graphs: basic random graphs concepts, thresholds, subgraph containment (planted clique), connectivity, broadcasting on trees,
CS-455: Topics in theoretical computer science
The students gain an in-depth knowledge of several current and emerging areas of theoretical computer science. The course familiarizes them with advanced techniques, and develops an understanding of f
CS-448: Sublinear algorithms for big data analysis
In this course we will define rigorous mathematical models for computing on large datasets, cover main algorithmic techniques that have been developed for sublinear (e.g. faster than linear time) data
EE-619: Advanced topics in network neuroscience
The main goal of this course is to give the student a solid introduction into approaches, methods, and tools for brain network analysis. The student will learn about principles of network science and
MATH-261: Discrete optimization
This course is an introduction to linear and discrete optimization. Warning: This is a mathematics course! While much of the course will be algorithmic in nature, you will still need to be able to p
COM-406: Foundations of Data Science
We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.